# Copyright (c) OpenMMLab. All rights reserved. from typing import Dict, Optional from torch import Tensor from mmdet.registry import MODELS from mmdet.structures import TrackSampleList from mmdet.utils import OptConfigType, OptMultiConfig from .base import BaseMOTModel @MODELS.register_module() class OCSORT(BaseMOTModel): """OCOSRT: Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking This multi object tracker is the implementation of `OC-SORT `_. Args: detector (dict): Configuration of detector. Defaults to None. tracker (dict): Configuration of tracker. Defaults to None. motion (dict): Configuration of motion. Defaults to None. init_cfg (dict): Configuration of initialization. Defaults to None. """ def __init__(self, detector: Optional[dict] = None, tracker: Optional[dict] = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__(data_preprocessor, init_cfg) if detector is not None: self.detector = MODELS.build(detector) if tracker is not None: self.tracker = MODELS.build(tracker) def loss(self, inputs: Tensor, data_samples: TrackSampleList, **kwargs) -> dict: """Calculate losses from a batch of inputs and data samples.""" return self.detector.loss(inputs, data_samples, **kwargs) def predict(self, inputs: Dict[str, Tensor], data_samples: TrackSampleList, **kwargs) -> TrackSampleList: """Predict results from a video and data samples with post-processing. Args: inputs (Tensor): of shape (N, T, C, H, W) encoding input images. The N denotes batch size. The T denotes the number of frames in a video. data_samples (list[:obj:`TrackDataSample`]): The batch data samples. It usually includes information such as `video_data_samples`. Returns: TrackSampleList: Tracking results of the inputs. """ assert inputs.dim() == 5, 'The img must be 5D Tensor (N, T, C, H, W).' assert inputs.size(0) == 1, \ 'OCSORT inference only support ' \ '1 batch size per gpu for now.' assert len(data_samples) == 1, \ 'OCSORT inference only support 1 batch size per gpu for now.' track_data_sample = data_samples[0] video_len = len(track_data_sample) for frame_id in range(video_len): img_data_sample = track_data_sample[frame_id] single_img = inputs[:, frame_id].contiguous() # det_results List[DetDataSample] det_results = self.detector.predict(single_img, [img_data_sample]) assert len(det_results) == 1, 'Batch inference is not supported.' pred_track_instances = self.tracker.track( data_sample=det_results[0], **kwargs) img_data_sample.pred_track_instances = pred_track_instances return [track_data_sample]