Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from mmcv.transforms.loading import LoadImageFromFile | |
from mmengine.dataset.sampler import DefaultSampler | |
from mmdet.datasets.coco import CocoDataset | |
from mmdet.datasets.samplers.batch_sampler import AspectRatioBatchSampler | |
from mmdet.datasets.transforms.formatting import PackDetInputs | |
from mmdet.datasets.transforms.loading import LoadAnnotations | |
from mmdet.datasets.transforms.transforms import RandomFlip, Resize | |
from mmdet.evaluation.metrics.coco_metric import CocoMetric | |
# dataset settings | |
dataset_type = 'CocoDataset' | |
data_root = 'data/coco/' | |
# Example to use different file client | |
# Method 1: simply set the data root and let the file I/O module | |
# automatically infer from prefix (not support LMDB and Memcache yet) | |
# data_root = 's3://openmmlab/datasets/detection/coco/' | |
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6 | |
# backend_args = dict( | |
# backend='petrel', | |
# path_mapping=dict({ | |
# './data/': 's3://openmmlab/datasets/detection/', | |
# 'data/': 's3://openmmlab/datasets/detection/' | |
# })) | |
backend_args = None | |
train_pipeline = [ | |
dict(type=LoadImageFromFile, backend_args=backend_args), | |
dict(type=LoadAnnotations, with_bbox=True, with_mask=True), | |
dict(type=Resize, scale=(1333, 800), keep_ratio=True), | |
dict(type=RandomFlip, prob=0.5), | |
dict(type=PackDetInputs) | |
] | |
test_pipeline = [ | |
dict(type=LoadImageFromFile, backend_args=backend_args), | |
dict(type=Resize, scale=(1333, 800), keep_ratio=True), | |
# If you don't have a gt annotation, delete the pipeline | |
dict(type=LoadAnnotations, with_bbox=True, with_mask=True), | |
dict( | |
type=PackDetInputs, | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_dataloader = dict( | |
batch_size=2, | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(type=DefaultSampler, shuffle=True), | |
batch_sampler=dict(type=AspectRatioBatchSampler), | |
dataset=dict( | |
type=CocoDataset, | |
data_root=data_root, | |
ann_file='annotations/instances_train2017.json', | |
data_prefix=dict(img='train2017/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=train_pipeline, | |
backend_args=backend_args)) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type=DefaultSampler, shuffle=False), | |
dataset=dict( | |
type=CocoDataset, | |
data_root=data_root, | |
ann_file='annotations/instances_val2017.json', | |
data_prefix=dict(img='val2017/'), | |
test_mode=True, | |
pipeline=test_pipeline, | |
backend_args=backend_args)) | |
test_dataloader = val_dataloader | |
val_evaluator = dict( | |
type=CocoMetric, | |
ann_file=data_root + 'annotations/instances_val2017.json', | |
metric=['bbox', 'segm'], | |
format_only=False, | |
backend_args=backend_args) | |
test_evaluator = val_evaluator | |
# inference on test dataset and | |
# format the output results for submission. | |
# test_dataloader = dict( | |
# batch_size=1, | |
# num_workers=2, | |
# persistent_workers=True, | |
# drop_last=False, | |
# sampler=dict(type=DefaultSampler, shuffle=False), | |
# dataset=dict( | |
# type=CocoDataset, | |
# data_root=data_root, | |
# ann_file=data_root + 'annotations/image_info_test-dev2017.json', | |
# data_prefix=dict(img='test2017/'), | |
# test_mode=True, | |
# pipeline=test_pipeline)) | |
# test_evaluator = dict( | |
# type=CocoMetric, | |
# metric=['bbox', 'segm'], | |
# format_only=True, | |
# ann_file=data_root + 'annotations/image_info_test-dev2017.json', | |
# outfile_prefix='./work_dirs/coco_instance/test') | |