File size: 13,662 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import copy

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule

from mmseg.models.decode_heads.decode_head import BaseDecodeHead
from mmseg.models.utils import resize
from opencd.registry import MODELS


class BAM(nn.Module):
    """ Basic self-attention module
    """

    def __init__(self, in_dim, ds=8, activation=nn.ReLU):
        super(BAM, self).__init__()
        self.chanel_in = in_dim
        self.key_channel = self.chanel_in // 8
        self.activation = activation
        self.ds = ds  #
        self.pool = nn.AvgPool2d(self.ds)
        self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
        self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
        self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
        self.gamma = nn.Parameter(torch.zeros(1))

        self.softmax = nn.Softmax(dim=-1)  #

    def forward(self, input):
        """
            inputs :
                x : input feature maps( B X C X W X H)
            returns :
                out : self attention value + input feature
                attention: B X N X N (N is Width*Height)
        """
        x = self.pool(input)
        m_batchsize, C, width, height = x.size()
        proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1)  # B X C X (N)/(ds*ds)
        proj_key = self.key_conv(x).view(m_batchsize, -1, width * height)  # B X C x (*W*H)/(ds*ds)
        energy = torch.bmm(proj_query, proj_key)  # transpose check
        energy = (self.key_channel ** -.5) * energy

        attention = self.softmax(energy)  # BX (N) X (N)/(ds*ds)/(ds*ds)

        proj_value = self.value_conv(x).view(m_batchsize, -1, width * height)  # B X C X N

        out = torch.bmm(proj_value, attention.permute(0, 2, 1))
        out = out.view(m_batchsize, C, width, height)

        out = F.interpolate(out, [width * self.ds, height * self.ds])
        out = out + input

        return out


class _PAMBlock(nn.Module):
    '''
    The basic implementation for self-attention block/non-local block
    Input/Output:
        N * C  *  H  *  (2*W)
    Parameters:
        in_channels       : the dimension of the input feature map
        key_channels      : the dimension after the key/query transform
        value_channels    : the dimension after the value transform
        scale             : choose the scale to partition the input feature maps
        ds                : downsampling scale
    '''

    def __init__(self, in_channels, key_channels, value_channels, scale=1, ds=1):
        super(_PAMBlock, self).__init__()
        self.scale = scale
        self.ds = ds
        self.pool = nn.AvgPool2d(self.ds)
        self.in_channels = in_channels
        self.key_channels = key_channels
        self.value_channels = value_channels

        self.f_key = nn.Sequential(
            nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels,
                      kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(self.key_channels)
        )
        self.f_query = nn.Sequential(
            nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels,
                      kernel_size=1, stride=1, padding=0),
            nn.BatchNorm2d(self.key_channels)
        )
        self.f_value = nn.Conv2d(in_channels=self.in_channels, out_channels=self.value_channels,
                                 kernel_size=1, stride=1, padding=0)

    def forward(self, input):
        x = input
        if self.ds != 1:
            x = self.pool(input)
        # input shape: b,c,h,2w
        batch_size, c, h, w = x.size(0), x.size(1), x.size(2), x.size(3) // 2

        local_y = []
        local_x = []
        step_h, step_w = h // self.scale, w // self.scale
        for i in range(0, self.scale):
            for j in range(0, self.scale):
                start_x, start_y = i * step_h, j * step_w
                end_x, end_y = min(start_x + step_h, h), min(start_y + step_w, w)
                if i == (self.scale - 1):
                    end_x = h
                if j == (self.scale - 1):
                    end_y = w
                local_x += [start_x, end_x]
                local_y += [start_y, end_y]

        value = self.f_value(x)
        query = self.f_query(x)
        key = self.f_key(x)

        value = torch.stack([value[:, :, :, :w], value[:, :, :, w:]], 4)  # B*N*H*W*2
        query = torch.stack([query[:, :, :, :w], query[:, :, :, w:]], 4)  # B*N*H*W*2
        key = torch.stack([key[:, :, :, :w], key[:, :, :, w:]], 4)  # B*N*H*W*2

        local_block_cnt = 2 * self.scale * self.scale

        #  self-attention func
        def func(value_local, query_local, key_local):
            batch_size_new = value_local.size(0)
            h_local, w_local = value_local.size(2), value_local.size(3)
            value_local = value_local.contiguous().view(batch_size_new, self.value_channels, -1)

            query_local = query_local.contiguous().view(batch_size_new, self.key_channels, -1)
            query_local = query_local.permute(0, 2, 1)
            key_local = key_local.contiguous().view(batch_size_new, self.key_channels, -1)

            sim_map = torch.bmm(query_local, key_local)  # batch matrix multiplication
            sim_map = (self.key_channels ** -.5) * sim_map
            sim_map = F.softmax(sim_map, dim=-1)

            context_local = torch.bmm(value_local, sim_map.permute(0, 2, 1))
            # context_local = context_local.permute(0, 2, 1).contiguous()
            context_local = context_local.view(batch_size_new, self.value_channels, h_local, w_local, 2)
            return context_local

        #  Parallel Computing to speed up
        #  reshape value_local, q, k
        v_list = [value[:, :, local_x[i]:local_x[i + 1], local_y[i]:local_y[i + 1]] for i in
                  range(0, local_block_cnt, 2)]
        v_locals = torch.cat(v_list, dim=0)
        q_list = [query[:, :, local_x[i]:local_x[i + 1], local_y[i]:local_y[i + 1]] for i in
                  range(0, local_block_cnt, 2)]
        q_locals = torch.cat(q_list, dim=0)
        k_list = [key[:, :, local_x[i]:local_x[i + 1], local_y[i]:local_y[i + 1]] for i in range(0, local_block_cnt, 2)]
        k_locals = torch.cat(k_list, dim=0)
        context_locals = func(v_locals, q_locals, k_locals)

        context_list = []
        for i in range(0, self.scale):
            row_tmp = []
            for j in range(0, self.scale):
                left = batch_size * (j + i * self.scale)
                right = batch_size * (j + i * self.scale) + batch_size
                tmp = context_locals[left:right]
                row_tmp.append(tmp)
            context_list.append(torch.cat(row_tmp, 3))

        context = torch.cat(context_list, 2)
        context = torch.cat([context[:, :, :, :, 0], context[:, :, :, :, 1]], 3)

        if self.ds != 1:
            context = F.interpolate(context, [h * self.ds, 2 * w * self.ds])

        return context


class PAMBlock(_PAMBlock):
    def __init__(self, in_channels, key_channels=None, value_channels=None, scale=1, ds=1):
        if key_channels == None:
            key_channels = in_channels // 8
        if value_channels == None:
            value_channels = in_channels
        super(PAMBlock, self).__init__(in_channels, key_channels, value_channels, scale, ds)


class PAM(nn.Module):
    """
        PAM module
    """

    def __init__(self, in_channels, out_channels, sizes=([1]), ds=1):
        super(PAM, self).__init__()
        self.group = len(sizes)
        self.stages = []
        self.ds = ds  # output stride
        self.value_channels = out_channels
        self.key_channels = out_channels // 8

        self.stages = nn.ModuleList(
            [self._make_stage(in_channels, self.key_channels, self.value_channels, size, self.ds)
             for size in sizes])
        self.conv_bn = nn.Sequential(
            nn.Conv2d(in_channels * self.group, out_channels, kernel_size=1, padding=0, bias=False),
            # nn.BatchNorm2d(out_channels),
        )

    def _make_stage(self, in_channels, key_channels, value_channels, size, ds):
        return PAMBlock(in_channels, key_channels, value_channels, size, ds)

    def forward(self, feats):
        priors = [stage(feats) for stage in self.stages]

        #  concat
        context = []
        for i in range(0, len(priors)):
            context += [priors[i]]
        output = self.conv_bn(torch.cat(context, 1))

        return output


def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)


class CDSA(nn.Module):
    """self attention module for change detection
    """

    def __init__(self, in_c, ds=1, mode='BAM'):
        super(CDSA, self).__init__()
        self.in_C = in_c
        self.ds = ds
        self.mode = mode
        if self.mode == 'BAM':
            self.Self_Att = BAM(self.in_C, ds=self.ds)
        elif self.mode == 'PAM':
            self.Self_Att = PAM(in_channels=self.in_C, out_channels=self.in_C, sizes=[1, 2, 4, 8], ds=self.ds)
        elif self.mode == 'None':
            self.Self_Att = nn.Identity()
        self.apply(weights_init)

    def forward(self, x1, x2):
        height = x1.shape[3]
        x = torch.cat((x1, x2), 3)
        x = self.Self_Att(x)
        return x[:, :, :, 0:height], x[:, :, :, height:]


@MODELS.register_module()
class STAHead(BaseDecodeHead):
    """The Head of STANet.

    Args:
        sa_mode:
        interpolate_mode: The interpolate mode of MLP head upsample operation.
            Default: 'bilinear'.
    """

    def __init__(
        self, 
        sa_mode='PAM', 
        sa_in_channels=256, 
        sa_ds=1, 
        distance_threshold=1, 
        **kwargs):
        super().__init__(input_transform='multiple_select', num_classes=1, **kwargs)

        num_inputs = len(self.in_channels)
        assert num_inputs == len(self.in_index)
        self.distance_threshold = distance_threshold

        self.fpn_convs = nn.ModuleList()
        for in_channels in self.in_channels:
            fpn_conv = ConvModule(
                in_channels,
                self.channels,
                1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg,
                inplace=False)
            self.fpn_convs.append(fpn_conv)
        
        self.fpn_bottleneck = nn.Sequential(
            ConvModule(
                len(self.in_channels) * self.channels,
                sa_in_channels,
                3,
                padding=1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg),
            nn.Dropout(0.5),
            ConvModule(
                sa_in_channels,
                sa_in_channels,
                3,
                padding=1,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg)
        )
        
        self.netA = CDSA(in_c=sa_in_channels, ds=sa_ds, mode=sa_mode)
        self.calc_dist = nn.PairwiseDistance(keepdim=True)
        self.conv_seg = nn.Identity()
                
    def base_forward(self, inputs):
        fpn_outs = [
            self.fpn_convs[i](inputs[i])
            for i in range(len(self.in_channels))
        ]

        for i in range(len(self.in_channels)):
            fpn_outs[i] = resize(
                fpn_outs[i],
                size=fpn_outs[0].shape[2:],
                mode='bilinear',
                align_corners=self.align_corners)
        fpn_outs = torch.cat(fpn_outs, dim=1)
        feats = self.fpn_bottleneck(fpn_outs)
        return feats

    def forward(self, inputs):
        # Receive 4 stage backbone feature map: 1/4, 1/8, 1/16, 1/32
        inputs = self._transform_inputs(inputs)
        inputs1 = []
        inputs2 = []
        for input in inputs:
            f1, f2 = torch.chunk(input, 2, dim=1)
            inputs1.append(f1)
            inputs2.append(f2)
        
        f1 = self.base_forward(inputs1)
        f2 = self.base_forward(inputs2)
        f1, f2 = self.netA(f1, f2)

        # if you use PyTorch<=1.8, there may be some problems. 
        # see https://github.com/justchenhao/STANet/issues/85
        f1 = f1.permute(0, 2, 3, 1)
        f2 = f2.permute(0, 2, 3, 1)
        dist = self.calc_dist(f1, f2).permute(0, 3, 1, 2)

        dist = F.interpolate(dist, size=inputs[0].shape[2:], mode='bilinear', align_corners=True)

        return dist

    def predict_by_feat(self, seg_logits, batch_img_metas):
        """Transform a batch of output seg_logits to the input shape.

        Args:
            seg_logits (Tensor): The output from decode head forward function.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.

        Returns:
            Tensor: Outputs segmentation logits map.
        """

        seg_logits_copy = copy.deepcopy(seg_logits)
        seg_logits[seg_logits_copy > self.distance_threshold] = 100
        seg_logits[seg_logits_copy <= self.distance_threshold] = -100

        seg_logits = resize(
            input=seg_logits,
            size=batch_img_metas[0]['img_shape'],
            mode='bilinear',
            align_corners=self.align_corners)
        return seg_logits