File size: 10,149 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (c) OpenMMLab. All rights reserved.
import re
from typing import List, Optional

import torch
from mmengine.model import BaseModel

from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures import DataSample
from ...utils import no_load_hf_pretrained_model
from .modules import LlavaLlamaForCausalLM


@MODELS.register_module()
class Llava(BaseModel):
    """The LLaVA model for multiple tasks.

    Args:
        vision_encoder (dict): The config of the vision encoder.
        lang_encoder (dict): The config of the language encoder.
        tokenizer (dict): The tokenizer to encode the text.
        prompt_tmpl (str): Prompt template for inference.
        task (int): The task to perform prediction.
        use_im_start_end (bool): Whether to use the im_start and im_end tokens
        mm_vision_select_layer (int): The index from vision encoder output.
            Defaults to -1.
        use_mm_proj (bool): Whether to enable multi-modal projection.
            Defaults to True.
        load_lang_pretrained (bool): Whether to load the pretrained model of
            language encoder. Defaults to False.
        generation_cfg (dict): The extra generation config, accept the keyword
            arguments of [~`transformers.GenerationConfig`].
            Defaults to an empty dict.
        data_preprocessor (Optional[dict]): The config for preprocessing input
            data. If None or no specified type, it will use
            "MutimodalDataPreprocessor" as type.
            See :class:`MutimodalDataPreprocessor` for more details.
            Defaults to None.
        init_cfg (dict, optional): The initialization config. Defaults to None.
    """

    support_tasks = {'caption', 'vqa'}
    im_patch_token = '<im_patch>'
    im_start_token = '<im_start>'
    im_end_token = '<im_end>'

    def __init__(self,
                 vision_encoder: dict,
                 lang_encoder: dict,
                 tokenizer: dict,
                 mm_hidden_size: int,
                 prompt_tmpl: str,
                 task: str = 'caption',
                 use_im_start_end: bool = False,
                 mm_vision_select_layer: int = -1,
                 use_mm_proj: bool = True,
                 generation_cfg: dict = dict(),
                 load_lang_pretrained: bool = False,
                 data_preprocessor: Optional[dict] = None,
                 init_cfg: Optional[dict] = None):
        if data_preprocessor is None:
            data_preprocessor = {}
        if isinstance(data_preprocessor, dict):
            data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
            data_preprocessor = MODELS.build(data_preprocessor)

        super().__init__(
            init_cfg=init_cfg, data_preprocessor=data_preprocessor)

        if task not in self.support_tasks:
            raise ValueError(f'Unsupported task {task}, please select '
                             f'the task from {self.support_tasks}.')
        self.task = task

        # init tokenizer
        self.tokenizer = TOKENIZER.build(tokenizer)
        # add Llava special tokens to the tokenizer
        self.tokenizer.add_tokens([self.im_patch_token], special_tokens=True)
        if use_im_start_end:
            self.tokenizer.add_tokens([self.im_start_token, self.im_end_token],
                                      special_tokens=True)

        # Template to format the prompt input
        self.prompt_tmpl = prompt_tmpl

        # init vision encoder related modules
        vision_encoder_weight = vision_encoder.pop('pretrained', None)
        vision_encoder = MODELS.build(vision_encoder)
        if vision_encoder_weight is not None:
            from mmengine.runner.checkpoint import load_checkpoint
            load_checkpoint(
                vision_encoder,
                vision_encoder_weight,
                map_location='cpu',
                revise_keys=[(r'^backbone\.', '')],
            )
            vision_encoder.is_init = True

        # init language encoder related modules
        if load_lang_pretrained:
            lang_encoder = MODELS.build(lang_encoder)
        else:
            with no_load_hf_pretrained_model():
                lang_encoder = MODELS.build(lang_encoder)
        lang_encoder.resize_token_embeddings(len(self.tokenizer))

        self.model = LlavaLlamaForCausalLM(
            vision_encoder=vision_encoder,
            lang_encoder=lang_encoder,
            mm_hidden_size=mm_hidden_size,
            use_mm_proj=use_mm_proj,
            use_im_start_end=use_im_start_end,
            im_start_token=self.tokenizer.convert_tokens_to_ids(
                self.im_start_token),
            im_end_token=self.tokenizer.convert_tokens_to_ids(
                self.im_end_token),
            im_patch_token=self.tokenizer.convert_tokens_to_ids(
                self.im_patch_token),
            mm_vision_select_layer=mm_vision_select_layer)

        self.generation_cfg = generation_cfg

        if hasattr(self, 'register_load_state_dict_post_hook'):
            self.register_load_state_dict_post_hook(self._load_ckpt_hook)

    def forward(
        self,
        images: torch.Tensor,
        data_samples: Optional[List[DataSample]] = None,
        mode: str = 'loss',
    ):
        """The unified entry for a forward process in both training and test.

        - "predict": Forward and return the predictions, which are fully
          processed to a list of :obj:`DataSample`.
        - "loss": Forward and return a dict of losses according to the given
          inputs and data samples.

        Note that this method doesn't handle neither back propagation nor
        optimizer updating, which are done in the :meth:`train_step`.

        Args:
            images (torch.Tensor): The input image tensor with different ndim
                according to the inputs.
            data_samples (List[DataSample], optional): The annotation
                data of every samples. It's required if ``mode="loss"``.
                Defaults to None.
            mode (str): Return what kind of value. Defaults to 'loss'.

        Returns:
            The return type depends on ``mode``.
            - If ``mode="loss"``, return a dict of tensor.
        """

        if mode == 'predict':
            return self.predict(images, data_samples)
        elif mode == 'loss':
            raise NotImplementedError
        else:
            raise RuntimeError(f'Invalid mode "{mode}".')

    def predict(self,
                images: torch.Tensor,
                data_samples: Optional[List[DataSample]] = None,
                **generation_cfg):
        """Predict generation results from a batch of inputs.

        Args:
            images (torch.Tensor): For zero-shot, the input images tensor is
                with shape (B, C, H, W), for few-shot, which is
                (B, T_img, C, H, W) in general. Images in the same chunk
                are collated along T_img. Video data is not supported yet.
            data_samples (List[DataSample], optional): The annotation
                data of every samples. Defaults to None.
            **generation_cfg: Other keyword arguments accepted by the
                ``generate`` method of :attr:`lang_encoder`.

        Returns:
            List[DataSample]: Return list of data samples.
        """
        # generation_cfg in prediction should be dominant
        generation_cfg = {**self.generation_cfg, **generation_cfg}

        input_text = self.preprocess_text(data_samples, device=images.device)

        outputs = self.model.generate(
            input_text.input_ids,
            attention_mask=input_text.attention_mask,
            eos_token_id=self.tokenizer.eos_token_id,
            images=images,
            **generation_cfg)

        # remove prefix
        outputs = outputs[:, len(input_text.input_ids[0]):]

        return self.post_process(outputs, data_samples)

    def preprocess_text(self, data_samples: List[DataSample],
                        device: torch.device) -> List[DataSample]:
        """Preprocess text in advance before fed into language model.

        Args:
            data_samples (List[DataSample]): The annotation
                data of every samples. Defaults to None.
            device (torch.device): Device for text to put on.

        Returns:
            List[DataSample]: Return list of data samples.
        """
        prompts = []
        for sample in data_samples:
            final_prompt = self.prompt_tmpl.format(**sample.to_dict())
            prompts.append(final_prompt)

        self.tokenizer.padding_side = 'left'
        input_text = self.tokenizer(
            prompts,
            padding='longest',
            truncation=True,
            return_tensors='pt',
            max_length=2000,
        ).to(device)
        return input_text

    def post_process(
            self, outputs: torch.Tensor,
            data_samples: Optional[List[DataSample]]) -> List[DataSample]:
        """Perform post process for outputs for different task.

        Args:
            outputs (torch.Tensor): The generated outputs.
            data_samples (List[DataSample], optional): The annotation
                data of every samples.

        Returns:
            List[DataSample]: Return list of data samples.
        """
        outputs = self.tokenizer.batch_decode(
            outputs, skip_special_tokens=True)

        if data_samples is None:
            data_samples = [DataSample() for _ in range(len(outputs))]

        for output, data_sample in zip(outputs, data_samples):
            # remove text pattern
            if self.task == 'caption':
                data_sample.pred_caption = output
            elif self.task == 'vqa':
                data_sample.pred_answer = output

        return data_samples

    @staticmethod
    def _load_ckpt_hook(module, incompatible_keys):
        """Avoid warning missing keys except lang_encoder keys."""
        for key in list(incompatible_keys.missing_keys):
            if re.match('model.vision_tower', key):
                incompatible_keys.missing_keys.remove(key)