File size: 4,299 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright (c) OpenMMLab. All rights reserved.
from numbers import Number
from typing import Sequence, Union

import mmengine
import numpy as np
import torch
from mmengine.structures import BaseDataElement, LabelData


def format_label(value: Union[torch.Tensor, np.ndarray, Sequence, int],
                 num_classes: int = None) -> LabelData:
    """Convert label of various python types to :obj:`mmengine.LabelData`.

    Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
    :class:`Sequence`, :class:`int`.

    Args:
        value (torch.Tensor | numpy.ndarray | Sequence | int): Label value.
        num_classes (int, optional): The number of classes. If not None, set
            it to the metainfo. Defaults to None.

    Returns:
        :obj:`mmengine.LabelData`: The foramtted label data.
    """

    # Handle single number
    if isinstance(value, (torch.Tensor, np.ndarray)) and value.ndim == 0:
        value = int(value.item())

    if isinstance(value, np.ndarray):
        value = torch.from_numpy(value)
    elif isinstance(value, Sequence) and not mmengine.utils.is_str(value):
        value = torch.tensor(value)
    elif isinstance(value, int):
        value = torch.LongTensor([value])
    elif not isinstance(value, torch.Tensor):
        raise TypeError(f'Type {type(value)} is not an available label type.')

    metainfo = {}
    if num_classes is not None:
        metainfo['num_classes'] = num_classes
        if value.max() >= num_classes:
            raise ValueError(f'The label data ({value}) should not '
                             f'exceed num_classes ({num_classes}).')
    label = LabelData(label=value, metainfo=metainfo)
    return label


class ReIDDataSample(BaseDataElement):
    """A data structure interface of ReID task.

    It's used as interfaces between different components.

    Meta field:
        img_shape (Tuple): The shape of the corresponding input image.
            Used for visualization.
        ori_shape (Tuple): The original shape of the corresponding image.
            Used for visualization.
        num_classes (int): The number of all categories.
            Used for label format conversion.

    Data field:
        gt_label (LabelData): The ground truth label.
        pred_label (LabelData): The predicted label.
        scores (torch.Tensor): The outputs of model.
    """

    @property
    def gt_label(self):
        return self._gt_label

    @gt_label.setter
    def gt_label(self, value: LabelData):
        self.set_field(value, '_gt_label', dtype=LabelData)

    @gt_label.deleter
    def gt_label(self):
        del self._gt_label

    def set_gt_label(
        self, value: Union[np.ndarray, torch.Tensor, Sequence[Number], Number]
    ) -> 'ReIDDataSample':
        """Set label of ``gt_label``."""
        label = format_label(value, self.get('num_classes'))
        if 'gt_label' in self:  # setting for the second time
            self.gt_label.label = label.label
        else:  # setting for the first time
            self.gt_label = label
        return self

    def set_gt_score(self, value: torch.Tensor) -> 'ReIDDataSample':
        """Set score of ``gt_label``."""
        assert isinstance(value, torch.Tensor), \
            f'The value should be a torch.Tensor but got {type(value)}.'
        assert value.ndim == 1, \
            f'The dims of value should be 1, but got {value.ndim}.'

        if 'num_classes' in self:
            assert value.size(0) == self.num_classes, \
                f"The length of value ({value.size(0)}) doesn't "\
                f'match the num_classes ({self.num_classes}).'
            metainfo = {'num_classes': self.num_classes}
        else:
            metainfo = {'num_classes': value.size(0)}

        if 'gt_label' in self:  # setting for the second time
            self.gt_label.score = value
        else:  # setting for the first time
            self.gt_label = LabelData(score=value, metainfo=metainfo)
        return self

    @property
    def pred_feature(self):
        return self._pred_feature

    @pred_feature.setter
    def pred_feature(self, value: torch.Tensor):
        self.set_field(value, '_pred_feature', dtype=torch.Tensor)

    @pred_feature.deleter
    def pred_feature(self):
        del self._pred_feature