File size: 7,341 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional

from mmengine.model import BaseModule
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import TrackSampleList
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import InstanceList


@MODELS.register_module()
class QuasiDenseTrackHead(BaseModule):
    """The quasi-dense track head."""

    def __init__(self,
                 roi_extractor: Optional[dict] = None,
                 embed_head: Optional[dict] = None,
                 regress_head: Optional[dict] = None,
                 train_cfg: Optional[dict] = None,
                 test_cfg: Optional[dict] = None,
                 init_cfg: Optional[dict] = None,
                 **kwargs):
        super().__init__(init_cfg=init_cfg)
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        if embed_head is not None:
            self.init_embed_head(roi_extractor, embed_head)

        if regress_head is not None:
            raise NotImplementedError('Regression head is not supported yet.')

        self.init_assigner_sampler()

    def init_embed_head(self, roi_extractor, embed_head) -> None:
        """Initialize ``embed_head``

        Args:
            roi_extractor (dict, optional): Configuration of roi extractor.
                Defaults to None.
            embed_head (dict, optional): Configuration of embed head. Defaults
                to None.
        """
        self.roi_extractor = MODELS.build(roi_extractor)
        self.embed_head = MODELS.build(embed_head)

    def init_assigner_sampler(self) -> None:
        """Initialize assigner and sampler."""
        self.bbox_assigner = None
        self.bbox_sampler = None
        if self.train_cfg:
            self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner)
            self.bbox_sampler = TASK_UTILS.build(
                self.train_cfg.sampler, default_args=dict(context=self))

    @property
    def with_track(self) -> bool:
        """bool: whether the multi-object tracker has an embed head"""
        return hasattr(self, 'embed_head') and self.embed_head is not None

    def extract_roi_feats(self, feats: List[Tensor],
                          bboxes: List[Tensor]) -> Tensor:
        """Extract roi features.

        Args:
            feats (list[Tensor]): list of multi-level image features.
            bboxes (list[Tensor]): list of bboxes in sampling result.

        Returns:
            Tensor: The extracted roi features.
        """
        rois = bbox2roi(bboxes)
        bbox_feats = self.roi_extractor(feats[:self.roi_extractor.num_inputs],
                                        rois)
        return bbox_feats

    def loss(self, key_feats: List[Tensor], ref_feats: List[Tensor],
             rpn_results_list: InstanceList,
             ref_rpn_results_list: InstanceList, data_samples: TrackSampleList,
             **kwargs) -> dict:
        """Calculate losses from a batch of inputs and data samples.

        Args:
            key_feats (list[Tensor]): list of multi-level image features.
            ref_feats (list[Tensor]): list of multi-level ref_img features.
            rpn_results_list (list[:obj:`InstanceData`]): List of region
                proposals of key img.
            ref_rpn_results_list (list[:obj:`InstanceData`]): List of region
                proposals of ref img.
            data_samples (list[:obj:`TrackDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance`.

        Returns:
            dict: A dictionary of loss components.
        """
        assert self.with_track
        num_imgs = len(data_samples)
        batch_gt_instances = []
        ref_batch_gt_instances = []
        batch_gt_instances_ignore = []
        gt_match_indices_list = []
        for track_data_sample in data_samples:
            key_data_sample = track_data_sample.get_key_frames()[0]
            ref_data_sample = track_data_sample.get_ref_frames()[0]
            batch_gt_instances.append(key_data_sample.gt_instances)
            ref_batch_gt_instances.append(ref_data_sample.gt_instances)
            if 'ignored_instances' in key_data_sample:
                batch_gt_instances_ignore.append(
                    key_data_sample.ignored_instances)
            else:
                batch_gt_instances_ignore.append(None)
            # get gt_match_indices
            ins_ids = key_data_sample.gt_instances.instances_ids.tolist()
            ref_ins_ids = ref_data_sample.gt_instances.instances_ids.tolist()
            match_indices = Tensor([
                ref_ins_ids.index(i) if (i in ref_ins_ids and i > 0) else -1
                for i in ins_ids
            ]).to(key_feats[0].device)
            gt_match_indices_list.append(match_indices)

        key_sampling_results, ref_sampling_results = [], []
        for i in range(num_imgs):
            rpn_results = rpn_results_list[i]
            ref_rpn_results = ref_rpn_results_list[i]
            # rename ref_rpn_results.bboxes to ref_rpn_results.priors
            ref_rpn_results.priors = ref_rpn_results.pop('bboxes')

            assign_result = self.bbox_assigner.assign(
                rpn_results, batch_gt_instances[i],
                batch_gt_instances_ignore[i])
            sampling_result = self.bbox_sampler.sample(
                assign_result,
                rpn_results,
                batch_gt_instances[i],
                feats=[lvl_feat[i][None] for lvl_feat in key_feats])
            key_sampling_results.append(sampling_result)

            ref_assign_result = self.bbox_assigner.assign(
                ref_rpn_results, ref_batch_gt_instances[i],
                batch_gt_instances_ignore[i])
            ref_sampling_result = self.bbox_sampler.sample(
                ref_assign_result,
                ref_rpn_results,
                ref_batch_gt_instances[i],
                feats=[lvl_feat[i][None] for lvl_feat in ref_feats])
            ref_sampling_results.append(ref_sampling_result)

        key_bboxes = [res.pos_bboxes for res in key_sampling_results]
        key_roi_feats = self.extract_roi_feats(key_feats, key_bboxes)
        ref_bboxes = [res.bboxes for res in ref_sampling_results]
        ref_roi_feats = self.extract_roi_feats(ref_feats, ref_bboxes)

        loss_track = self.embed_head.loss(key_roi_feats, ref_roi_feats,
                                          key_sampling_results,
                                          ref_sampling_results,
                                          gt_match_indices_list)

        return loss_track

    def predict(self, feats: List[Tensor],
                rescaled_bboxes: List[Tensor]) -> Tensor:
        """Perform forward propagation of the tracking head and predict
        tracking results on the features of the upstream network.

        Args:
            feats (list[Tensor]): Multi level feature maps of `img`.
            rescaled_bboxes (list[Tensor]): list of rescaled bboxes in sampling
                result.

        Returns:
            Tensor: The extracted track features.
        """
        bbox_feats = self.extract_roi_feats(feats, rescaled_bboxes)
        track_feats = self.embed_head.predict(bbox_feats)
        return track_feats