Spaces:
Runtime error
Runtime error
File size: 33,047 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from collections import defaultdict
from typing import Dict, List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Conv2d
from mmcv.ops import point_sample
from mmengine.model import ModuleList
from mmengine.model.weight_init import caffe2_xavier_init
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.models.dense_heads import AnchorFreeHead, MaskFormerHead
from mmdet.models.utils import get_uncertain_point_coords_with_randomness
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import TrackDataSample, TrackSampleList
from mmdet.structures.mask import mask2bbox
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
OptMultiConfig, reduce_mean)
from ..layers import Mask2FormerTransformerDecoder
@MODELS.register_module()
class Mask2FormerTrackHead(MaskFormerHead):
"""Implements the Mask2Former head.
See `Masked-attention Mask Transformer for Universal Image
Segmentation <https://arxiv.org/pdf/2112.01527>`_ for details.
Args:
in_channels (list[int]): Number of channels in the input feature map.
feat_channels (int): Number of channels for features.
out_channels (int): Number of channels for output.
num_classes (int): Number of VIS classes.
num_queries (int): Number of query in Transformer decoder.
Defaults to 100.
num_transformer_feat_level (int): Number of feats levels.
Defaults to 3.
pixel_decoder (:obj:`ConfigDict` or dict): Config for pixel
decoder.
enforce_decoder_input_project (bool, optional): Whether to add
a layer to change the embed_dim of transformer encoder in
pixel decoder to the embed_dim of transformer decoder.
Defaults to False.
transformer_decoder (:obj:`ConfigDict` or dict): Config for
transformer decoder.
positional_encoding (:obj:`ConfigDict` or dict): Config for
transformer decoder position encoding.
Defaults to `SinePositionalEncoding3D`.
loss_cls (:obj:`ConfigDict` or dict): Config of the classification
loss. Defaults to `CrossEntropyLoss`.
loss_mask (:obj:`ConfigDict` or dict): Config of the mask loss.
Defaults to 'CrossEntropyLoss'.
loss_dice (:obj:`ConfigDict` or dict): Config of the dice loss.
Defaults to 'DiceLoss'.
train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
Mask2Former head. Defaults to None.
test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
Mask2Former head. Defaults to None.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict], optional): Initialization config dict. Defaults to None.
"""
def __init__(self,
in_channels: List[int],
feat_channels: int,
out_channels: int,
num_classes: int,
num_frames: int = 2,
num_queries: int = 100,
num_transformer_feat_level: int = 3,
pixel_decoder: ConfigType = ...,
enforce_decoder_input_project: bool = False,
transformer_decoder: ConfigType = ...,
positional_encoding: ConfigType = dict(
num_feats=128, normalize=True),
loss_cls: ConfigType = dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=2.0,
reduction='mean',
class_weight=[1.0] * 133 + [0.1]),
loss_mask: ConfigType = dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=5.0),
loss_dice: ConfigType = dict(
type='DiceLoss',
use_sigmoid=True,
activate=True,
reduction='mean',
naive_dice=True,
eps=1.0,
loss_weight=5.0),
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
init_cfg: OptMultiConfig = None,
**kwargs) -> None:
super(AnchorFreeHead, self).__init__(init_cfg=init_cfg)
self.num_classes = num_classes
self.num_frames = num_frames
self.num_queries = num_queries
self.num_transformer_feat_level = num_transformer_feat_level
self.num_transformer_feat_level = num_transformer_feat_level
self.num_heads = transformer_decoder.layer_cfg.cross_attn_cfg.num_heads
self.num_transformer_decoder_layers = transformer_decoder.num_layers
assert pixel_decoder.encoder.layer_cfg. \
self_attn_cfg.num_levels == num_transformer_feat_level
pixel_decoder_ = copy.deepcopy(pixel_decoder)
pixel_decoder_.update(
in_channels=in_channels,
feat_channels=feat_channels,
out_channels=out_channels)
self.pixel_decoder = MODELS.build(pixel_decoder_)
self.transformer_decoder = Mask2FormerTransformerDecoder(
**transformer_decoder)
self.decoder_embed_dims = self.transformer_decoder.embed_dims
self.decoder_input_projs = ModuleList()
# from low resolution to high resolution
for _ in range(num_transformer_feat_level):
if (self.decoder_embed_dims != feat_channels
or enforce_decoder_input_project):
self.decoder_input_projs.append(
Conv2d(
feat_channels, self.decoder_embed_dims, kernel_size=1))
else:
self.decoder_input_projs.append(nn.Identity())
self.decoder_positional_encoding = MODELS.build(positional_encoding)
self.query_embed = nn.Embedding(self.num_queries, feat_channels)
self.query_feat = nn.Embedding(self.num_queries, feat_channels)
# from low resolution to high resolution
self.level_embed = nn.Embedding(self.num_transformer_feat_level,
feat_channels)
self.cls_embed = nn.Linear(feat_channels, self.num_classes + 1)
self.mask_embed = nn.Sequential(
nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
nn.Linear(feat_channels, out_channels))
self.test_cfg = test_cfg
self.train_cfg = train_cfg
if train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg.assigner)
self.sampler = TASK_UTILS.build(
# self.train_cfg.sampler, default_args=dict(context=self))
self.train_cfg['sampler'],
default_args=dict(context=self))
self.num_points = self.train_cfg.get('num_points', 12544)
self.oversample_ratio = self.train_cfg.get('oversample_ratio', 3.0)
self.importance_sample_ratio = self.train_cfg.get(
'importance_sample_ratio', 0.75)
self.class_weight = loss_cls.class_weight
self.loss_cls = MODELS.build(loss_cls)
self.loss_mask = MODELS.build(loss_mask)
self.loss_dice = MODELS.build(loss_dice)
def init_weights(self) -> None:
for m in self.decoder_input_projs:
if isinstance(m, Conv2d):
caffe2_xavier_init(m, bias=0)
self.pixel_decoder.init_weights()
for p in self.transformer_decoder.parameters():
if p.dim() > 1:
nn.init.xavier_normal_(p)
def preprocess_gt(self, batch_gt_instances: InstanceList) -> InstanceList:
"""Preprocess the ground truth for all images.
It aims to reorganize the `gt`. For example, in the
`batch_data_sample.gt_instances.mask`, its shape is
`(all_num_gts, h, w)`, but we don't know each gt belongs to which `img`
(assume `num_frames` is 2). So, this func used to reshape the `gt_mask`
to `(num_gts_per_img, num_frames, h, w)`. In addition, we can't
guarantee that the number of instances in these two images is equal,
so `-1` refers to nonexistent instances.
Args:
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``labels``, each is
ground truth labels of each bbox, with shape (num_gts, )
and ``masks``, each is ground truth masks of each instances
of an image, shape (num_gts, h, w).
Returns:
list[obj:`InstanceData`]: each contains the following keys
- labels (Tensor): Ground truth class indices\
for an image, with shape (n, ), n is the sum of\
number of stuff type and number of instance in an image.
- masks (Tensor): Ground truth mask for a\
image, with shape (n, t, h, w).
"""
final_batch_gt_instances = []
batch_size = len(batch_gt_instances) // self.num_frames
for batch_idx in range(batch_size):
pair_gt_insatences = batch_gt_instances[batch_idx *
self.num_frames:batch_idx *
self.num_frames +
self.num_frames]
assert len(
pair_gt_insatences
) > 1, f'mask2former for vis need multi frames to train, \
but you only use {len(pair_gt_insatences)} frames'
_device = pair_gt_insatences[0].labels.device
for gt_instances in pair_gt_insatences:
gt_instances.masks = gt_instances.masks.to_tensor(
dtype=torch.bool, device=_device)
all_ins_id = torch.cat([
gt_instances.instances_ids
for gt_instances in pair_gt_insatences
])
all_ins_id = all_ins_id.unique().tolist()
map_ins_id = dict()
for i, ins_id in enumerate(all_ins_id):
map_ins_id[ins_id] = i
num_instances = len(all_ins_id)
mask_shape = [
num_instances, self.num_frames,
pair_gt_insatences[0].masks.shape[1],
pair_gt_insatences[0].masks.shape[2]
]
gt_masks_per_video = torch.zeros(
mask_shape, dtype=torch.bool, device=_device)
gt_ids_per_video = torch.full((num_instances, self.num_frames),
-1,
dtype=torch.long,
device=_device)
gt_labels_per_video = torch.full((num_instances, ),
-1,
dtype=torch.long,
device=_device)
for frame_id in range(self.num_frames):
cur_frame_gts = pair_gt_insatences[frame_id]
ins_ids = cur_frame_gts.instances_ids.tolist()
for i, id in enumerate(ins_ids):
gt_masks_per_video[map_ins_id[id],
frame_id, :, :] = cur_frame_gts.masks[i]
gt_ids_per_video[map_ins_id[id],
frame_id] = cur_frame_gts.instances_ids[i]
gt_labels_per_video[
map_ins_id[id]] = cur_frame_gts.labels[i]
tmp_instances = InstanceData(
labels=gt_labels_per_video,
masks=gt_masks_per_video.long(),
instances_id=gt_ids_per_video)
final_batch_gt_instances.append(tmp_instances)
return final_batch_gt_instances
def _get_targets_single(self, cls_score: Tensor, mask_pred: Tensor,
gt_instances: InstanceData,
img_meta: dict) -> Tuple[Tensor]:
"""Compute classification and mask targets for one image.
Args:
cls_score (Tensor): Mask score logits from a single decoder layer
for one image. Shape (num_queries, cls_out_channels).
mask_pred (Tensor): Mask logits for a single decoder layer for one
image. Shape (num_queries, num_frames, h, w).
gt_instances (:obj:`InstanceData`): It contains ``labels`` and
``masks``.
img_meta (dict): Image informtation.
Returns:
tuple[Tensor]: A tuple containing the following for one image.
- labels (Tensor): Labels of each image. \
shape (num_queries, ).
- label_weights (Tensor): Label weights of each image. \
shape (num_queries, ).
- mask_targets (Tensor): Mask targets of each image. \
shape (num_queries, num_frames, h, w).
- mask_weights (Tensor): Mask weights of each image. \
shape (num_queries, ).
- pos_inds (Tensor): Sampled positive indices for each \
image.
- neg_inds (Tensor): Sampled negative indices for each \
image.
- sampling_result (:obj:`SamplingResult`): Sampling results.
"""
# (num_gts, )
gt_labels = gt_instances.labels
# (num_gts, num_frames, h, w)
gt_masks = gt_instances.masks
# sample points
num_queries = cls_score.shape[0]
num_gts = gt_labels.shape[0]
point_coords = torch.rand((1, self.num_points, 2),
device=cls_score.device)
# shape (num_queries, num_points)
mask_points_pred = point_sample(mask_pred,
point_coords.repeat(num_queries, 1,
1)).flatten(1)
# shape (num_gts, num_points)
gt_points_masks = point_sample(gt_masks.float(),
point_coords.repeat(num_gts, 1,
1)).flatten(1)
sampled_gt_instances = InstanceData(
labels=gt_labels, masks=gt_points_masks)
sampled_pred_instances = InstanceData(
scores=cls_score, masks=mask_points_pred)
# assign and sample
assign_result = self.assigner.assign(
pred_instances=sampled_pred_instances,
gt_instances=sampled_gt_instances,
img_meta=img_meta)
pred_instances = InstanceData(scores=cls_score, masks=mask_pred)
sampling_result = self.sampler.sample(
assign_result=assign_result,
pred_instances=pred_instances,
gt_instances=gt_instances)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
# label target
labels = gt_labels.new_full((self.num_queries, ),
self.num_classes,
dtype=torch.long)
labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
label_weights = gt_labels.new_ones((self.num_queries, ))
# mask target
mask_targets = gt_masks[sampling_result.pos_assigned_gt_inds]
mask_weights = mask_pred.new_zeros((self.num_queries, ))
mask_weights[pos_inds] = 1.0
return (labels, label_weights, mask_targets, mask_weights, pos_inds,
neg_inds, sampling_result)
def _loss_by_feat_single(self, cls_scores: Tensor, mask_preds: Tensor,
batch_gt_instances: List[InstanceData],
batch_img_metas: List[dict]) -> Tuple[Tensor]:
"""Loss function for outputs from a single decoder layer.
Args:
cls_scores (Tensor): Mask score logits from a single decoder layer
for all images. Shape (batch_size, num_queries,
cls_out_channels). Note `cls_out_channels` should include
background.
mask_preds (Tensor): Mask logits for a pixel decoder for all
images. Shape (batch_size, num_queries, num_frames,h, w).
batch_gt_instances (list[obj:`InstanceData`]): each contains
``labels`` and ``masks``.
batch_img_metas (list[dict]): List of image meta information.
Returns:
tuple[Tensor]: Loss components for outputs from a single \
decoder layer.
"""
num_imgs = cls_scores.size(0)
cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
mask_preds_list = [mask_preds[i] for i in range(num_imgs)]
(labels_list, label_weights_list, mask_targets_list, mask_weights_list,
avg_factor) = self.get_targets(cls_scores_list, mask_preds_list,
batch_gt_instances, batch_img_metas)
# shape (batch_size, num_queries)
labels = torch.stack(labels_list, dim=0)
# shape (batch_size, num_queries)
label_weights = torch.stack(label_weights_list, dim=0)
# shape (num_total_gts, num_frames, h, w)
mask_targets = torch.cat(mask_targets_list, dim=0)
# shape (batch_size, num_queries)
mask_weights = torch.stack(mask_weights_list, dim=0)
# classfication loss
# shape (batch_size * num_queries, )
cls_scores = cls_scores.flatten(0, 1)
labels = labels.flatten(0, 1)
label_weights = label_weights.flatten(0, 1)
class_weight = cls_scores.new_tensor(self.class_weight)
loss_cls = self.loss_cls(
cls_scores,
labels,
label_weights,
avg_factor=class_weight[labels].sum())
num_total_masks = reduce_mean(cls_scores.new_tensor([avg_factor]))
num_total_masks = max(num_total_masks, 1)
# extract positive ones
# shape (batch_size, num_queries, num_frames, h, w)
# -> (num_total_gts, num_frames, h, w)
mask_preds = mask_preds[mask_weights > 0]
if mask_targets.shape[0] == 0:
# zero match
loss_dice = mask_preds.sum()
loss_mask = mask_preds.sum()
return loss_cls, loss_mask, loss_dice
with torch.no_grad():
points_coords = get_uncertain_point_coords_with_randomness(
mask_preds.flatten(0, 1).unsqueeze(1), None, self.num_points,
self.oversample_ratio, self.importance_sample_ratio)
# shape (num_total_gts * num_frames, h, w) ->
# (num_total_gts, num_points)
mask_point_targets = point_sample(
mask_targets.flatten(0, 1).unsqueeze(1).float(),
points_coords).squeeze(1)
# shape (num_total_gts * num_frames, num_points)
mask_point_preds = point_sample(
mask_preds.flatten(0, 1).unsqueeze(1), points_coords).squeeze(1)
# dice loss
loss_dice = self.loss_dice(
mask_point_preds, mask_point_targets, avg_factor=num_total_masks)
# mask loss
# shape (num_total_gts * num_frames, num_points) ->
# (num_total_gts * num_frames * num_points, )
mask_point_preds = mask_point_preds.reshape(-1)
# shape (num_total_gts, num_points) -> (num_total_gts * num_points, )
mask_point_targets = mask_point_targets.reshape(-1)
loss_mask = self.loss_mask(
mask_point_preds,
mask_point_targets,
avg_factor=num_total_masks * self.num_points / self.num_frames)
return loss_cls, loss_mask, loss_dice
def _forward_head(
self, decoder_out: Tensor, mask_feature: Tensor,
attn_mask_target_size: Tuple[int,
int]) -> Tuple[Tensor, Tensor, Tensor]:
"""Forward for head part which is called after every decoder layer.
Args:
decoder_out (Tensor): in shape (num_queries, batch_size, c).
mask_feature (Tensor): in shape (batch_size, t, c, h, w).
attn_mask_target_size (tuple[int, int]): target attention
mask size.
Returns:
tuple: A tuple contain three elements.
- cls_pred (Tensor): Classification scores in shape \
(batch_size, num_queries, cls_out_channels). \
Note `cls_out_channels` should include background.
- mask_pred (Tensor): Mask scores in shape \
(batch_size, num_queries,h, w).
- attn_mask (Tensor): Attention mask in shape \
(batch_size * num_heads, num_queries, h, w).
"""
decoder_out = self.transformer_decoder.post_norm(decoder_out)
cls_pred = self.cls_embed(decoder_out)
mask_embed = self.mask_embed(decoder_out)
# shape (batch_size, num_queries, t, h, w)
mask_pred = torch.einsum('bqc,btchw->bqthw', mask_embed, mask_feature)
b, q, t, _, _ = mask_pred.shape
attn_mask = F.interpolate(
mask_pred.flatten(0, 1),
attn_mask_target_size,
mode='bilinear',
align_corners=False).view(b, q, t, attn_mask_target_size[0],
attn_mask_target_size[1])
# shape (batch_size, num_queries, t, h, w) ->
# (batch_size, num_queries, t*h*w) ->
# (batch_size, num_head, num_queries, t*h*w) ->
# (batch_size*num_head, num_queries, t*h*w)
attn_mask = attn_mask.flatten(2).unsqueeze(1).repeat(
(1, self.num_heads, 1, 1)).flatten(0, 1)
attn_mask = attn_mask.sigmoid() < 0.5
attn_mask = attn_mask.detach()
return cls_pred, mask_pred, attn_mask
def forward(
self, x: List[Tensor], data_samples: TrackDataSample
) -> Tuple[List[Tensor], List[Tensor]]:
"""Forward function.
Args:
x (list[Tensor]): Multi scale Features from the
upstream network, each is a 4D-tensor.
data_samples (List[:obj:`TrackDataSample`]): The Data
Samples. It usually includes information such as `gt_instance`.
Returns:
tuple[list[Tensor]]: A tuple contains two elements.
- cls_pred_list (list[Tensor)]: Classification logits \
for each decoder layer. Each is a 3D-tensor with shape \
(batch_size, num_queries, cls_out_channels). \
Note `cls_out_channels` should include background.
- mask_pred_list (list[Tensor]): Mask logits for each \
decoder layer. Each with shape (batch_size, num_queries, \
h, w).
"""
mask_features, multi_scale_memorys = self.pixel_decoder(x)
bt, c_m, h_m, w_m = mask_features.shape
batch_size = bt // self.num_frames if self.training else 1
t = bt // batch_size
mask_features = mask_features.view(batch_size, t, c_m, h_m, w_m)
# multi_scale_memorys (from low resolution to high resolution)
decoder_inputs = []
decoder_positional_encodings = []
for i in range(self.num_transformer_feat_level):
decoder_input = self.decoder_input_projs[i](multi_scale_memorys[i])
decoder_input = decoder_input.flatten(2)
level_embed = self.level_embed.weight[i][None, :, None]
decoder_input = decoder_input + level_embed
_, c, hw = decoder_input.shape
# shape (batch_size*t, c, h, w) ->
# (batch_size, t, c, hw) ->
# (batch_size, t*h*w, c)
decoder_input = decoder_input.view(batch_size, t, c,
hw).permute(0, 1, 3,
2).flatten(1, 2)
# shape (batch_size, c, h, w) -> (h*w, batch_size, c)
mask = decoder_input.new_zeros(
(batch_size, t) + multi_scale_memorys[i].shape[-2:],
dtype=torch.bool)
decoder_positional_encoding = self.decoder_positional_encoding(
mask)
decoder_positional_encoding = decoder_positional_encoding.flatten(
3).permute(0, 1, 3, 2).flatten(1, 2)
decoder_inputs.append(decoder_input)
decoder_positional_encodings.append(decoder_positional_encoding)
# shape (num_queries, c) -> (batch_size, num_queries, c)
query_feat = self.query_feat.weight.unsqueeze(0).repeat(
(batch_size, 1, 1))
query_embed = self.query_embed.weight.unsqueeze(0).repeat(
(batch_size, 1, 1))
cls_pred_list = []
mask_pred_list = []
cls_pred, mask_pred, attn_mask = self._forward_head(
query_feat, mask_features, multi_scale_memorys[0].shape[-2:])
cls_pred_list.append(cls_pred)
mask_pred_list.append(mask_pred)
for i in range(self.num_transformer_decoder_layers):
level_idx = i % self.num_transformer_feat_level
# if a mask is all True(all background), then set it all False.
attn_mask[torch.where(
attn_mask.sum(-1) == attn_mask.shape[-1])] = False
# cross_attn + self_attn
layer = self.transformer_decoder.layers[i]
query_feat = layer(
query=query_feat,
key=decoder_inputs[level_idx],
value=decoder_inputs[level_idx],
query_pos=query_embed,
key_pos=decoder_positional_encodings[level_idx],
cross_attn_mask=attn_mask,
query_key_padding_mask=None,
# here we do not apply masking on padded region
key_padding_mask=None)
cls_pred, mask_pred, attn_mask = self._forward_head(
query_feat, mask_features, multi_scale_memorys[
(i + 1) % self.num_transformer_feat_level].shape[-2:])
cls_pred_list.append(cls_pred)
mask_pred_list.append(mask_pred)
return cls_pred_list, mask_pred_list
def loss(
self,
x: Tuple[Tensor],
data_samples: TrackSampleList,
) -> Dict[str, Tensor]:
"""Perform forward propagation and loss calculation of the track head
on the features of the upstream network.
Args:
x (tuple[Tensor]): Multi-level features from the upstream
network, each is a 4D-tensor.
data_samples (List[:obj:`TrackDataSample`]): The Data
Samples. It usually includes information such as `gt_instance`.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
batch_img_metas = []
batch_gt_instances = []
for data_sample in data_samples:
video_img_metas = defaultdict(list)
for image_idx in range(len(data_sample)):
batch_gt_instances.append(data_sample[image_idx].gt_instances)
for key, value in data_sample[image_idx].metainfo.items():
video_img_metas[key].append(value)
batch_img_metas.append(video_img_metas)
# forward
all_cls_scores, all_mask_preds = self(x, data_samples)
# preprocess ground truth
batch_gt_instances = self.preprocess_gt(batch_gt_instances)
# loss
losses = self.loss_by_feat(all_cls_scores, all_mask_preds,
batch_gt_instances, batch_img_metas)
return losses
def predict(self,
x: Tuple[Tensor],
data_samples: TrackDataSample,
rescale: bool = True) -> InstanceList:
"""Test without augmentation.
Args:
x (tuple[Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
data_samples (List[:obj:`TrackDataSample`]): The Data
Samples. It usually includes information such as `gt_instance`.
rescale (bool, Optional): If False, then returned bboxes and masks
will fit the scale of img, otherwise, returned bboxes and masks
will fit the scale of original image shape. Defaults to True.
Returns:
list[obj:`InstanceData`]: each contains the following keys
- labels (Tensor): Prediction class indices\
for an image, with shape (n, ), n is the sum of\
number of stuff type and number of instance in an image.
- masks (Tensor): Prediction mask for a\
image, with shape (n, t, h, w).
"""
batch_img_metas = [
data_samples[img_idx].metainfo
for img_idx in range(len(data_samples))
]
all_cls_scores, all_mask_preds = self(x, data_samples)
mask_cls_results = all_cls_scores[-1]
mask_pred_results = all_mask_preds[-1]
mask_cls_results = mask_cls_results[0]
# upsample masks
img_shape = batch_img_metas[0]['batch_input_shape']
mask_pred_results = F.interpolate(
mask_pred_results[0],
size=(img_shape[0], img_shape[1]),
mode='bilinear',
align_corners=False)
results = self.predict_by_feat(mask_cls_results, mask_pred_results,
batch_img_metas)
return results
def predict_by_feat(self,
mask_cls_results: List[Tensor],
mask_pred_results: List[Tensor],
batch_img_metas: List[dict],
rescale: bool = True) -> InstanceList:
"""Get top-10 predictions.
Args:
mask_cls_results (Tensor): Mask classification logits,\
shape (batch_size, num_queries, cls_out_channels).
Note `cls_out_channels` should include background.
mask_pred_results (Tensor): Mask logits, shape \
(batch_size, num_queries, h, w).
batch_img_metas (list[dict]): List of image meta information.
rescale (bool, Optional): If False, then returned bboxes and masks
will fit the scale of img, otherwise, returned bboxes and masks
will fit the scale of original image shape. Defaults to True.
Returns:
list[obj:`InstanceData`]: each contains the following keys
- labels (Tensor): Prediction class indices\
for an image, with shape (n, ), n is the sum of\
number of stuff type and number of instance in an image.
- masks (Tensor): Prediction mask for a\
image, with shape (n, t, h, w).
"""
results = []
if len(mask_cls_results) > 0:
scores = F.softmax(mask_cls_results, dim=-1)[:, :-1]
labels = torch.arange(self.num_classes).unsqueeze(0).repeat(
self.num_queries, 1).flatten(0, 1).to(scores.device)
# keep top-10 predictions
scores_per_image, topk_indices = scores.flatten(0, 1).topk(
10, sorted=False)
labels_per_image = labels[topk_indices]
topk_indices = topk_indices // self.num_classes
mask_pred_results = mask_pred_results[topk_indices]
img_shape = batch_img_metas[0]['img_shape']
mask_pred_results = \
mask_pred_results[:, :, :img_shape[0], :img_shape[1]]
if rescale:
# return result in original resolution
ori_height, ori_width = batch_img_metas[0]['ori_shape'][:2]
mask_pred_results = F.interpolate(
mask_pred_results,
size=(ori_height, ori_width),
mode='bilinear',
align_corners=False)
masks = mask_pred_results > 0.
# format top-10 predictions
for img_idx in range(len(batch_img_metas)):
pred_track_instances = InstanceData()
pred_track_instances.masks = masks[:, img_idx]
pred_track_instances.bboxes = mask2bbox(masks[:, img_idx])
pred_track_instances.labels = labels_per_image
pred_track_instances.scores = scores_per_image
pred_track_instances.instances_id = torch.arange(10)
results.append(pred_track_instances)
return results
|