File size: 11,240 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple

import numpy as np
import torch
from mmengine.structures import InstanceData

try:
    import motmetrics
    from motmetrics.lap import linear_sum_assignment
except ImportError:
    motmetrics = None
from torch import Tensor

from mmdet.models.utils import imrenormalize
from mmdet.registry import MODELS
from mmdet.structures import TrackDataSample
from mmdet.structures.bbox import bbox_overlaps, bbox_xyxy_to_cxcyah
from mmdet.utils import OptConfigType
from .sort_tracker import SORTTracker


def cosine_distance(x: Tensor, y: Tensor) -> np.ndarray:
    """compute the cosine distance.

    Args:
        x (Tensor): embeddings with shape (N,C).
        y (Tensor): embeddings with shape (M,C).

    Returns:
        ndarray: cosine distance with shape (N,M).
    """
    x = x.cpu().numpy()
    y = y.cpu().numpy()
    x = x / np.linalg.norm(x, axis=1, keepdims=True)
    y = y / np.linalg.norm(y, axis=1, keepdims=True)
    dists = 1. - np.dot(x, y.T)
    return dists


@MODELS.register_module()
class StrongSORTTracker(SORTTracker):
    """Tracker for StrongSORT.

    Args:
        obj_score_thr (float, optional): Threshold to filter the objects.
            Defaults to 0.6.
        motion (dict): Configuration of motion. Defaults to None.
        reid (dict, optional): Configuration for the ReID model.
            - num_samples (int, optional): Number of samples to calculate the
                feature embeddings of a track. Default to None.
            - image_scale (tuple, optional): Input scale of the ReID model.
                Default to (256, 128).
            - img_norm_cfg (dict, optional): Configuration to normalize the
                input. Default to None.
            - match_score_thr (float, optional): Similarity threshold for the
                matching process. Default to 0.3.
            - motion_weight (float, optional): the weight of the motion cost.
                Defaults to 0.02.
        match_iou_thr (float, optional): Threshold of the IoU matching process.
            Defaults to 0.7.
        num_tentatives (int, optional): Number of continuous frames to confirm
            a track. Defaults to 2.
    """

    def __init__(self,
                 motion: Optional[dict] = None,
                 obj_score_thr: float = 0.6,
                 reid: dict = dict(
                     num_samples=None,
                     img_scale=(256, 128),
                     img_norm_cfg=None,
                     match_score_thr=0.3,
                     motion_weight=0.02),
                 match_iou_thr: float = 0.7,
                 num_tentatives: int = 2,
                 **kwargs):
        if motmetrics is None:
            raise RuntimeError('motmetrics is not installed,\
                 please install it by: pip install motmetrics')
        super().__init__(motion, obj_score_thr, reid, match_iou_thr,
                         num_tentatives, **kwargs)

    def update_track(self, id: int, obj: Tuple[Tensor]) -> None:
        """Update a track."""
        for k, v in zip(self.memo_items, obj):
            v = v[None]
            if self.momentums is not None and k in self.momentums:
                m = self.momentums[k]
                self.tracks[id][k] = (1 - m) * self.tracks[id][k] + m * v
            else:
                self.tracks[id][k].append(v)

        if self.tracks[id].tentative:
            if len(self.tracks[id]['bboxes']) >= self.num_tentatives:
                self.tracks[id].tentative = False
        bbox = bbox_xyxy_to_cxcyah(self.tracks[id].bboxes[-1])  # size = (1, 4)
        assert bbox.ndim == 2 and bbox.shape[0] == 1
        bbox = bbox.squeeze(0).cpu().numpy()
        score = float(self.tracks[id].scores[-1].cpu())
        self.tracks[id].mean, self.tracks[id].covariance = self.kf.update(
            self.tracks[id].mean, self.tracks[id].covariance, bbox, score)

    def track(self,
              model: torch.nn.Module,
              img: Tensor,
              data_sample: TrackDataSample,
              data_preprocessor: OptConfigType = None,
              rescale: bool = False,
              **kwargs) -> InstanceData:
        """Tracking forward function.

        Args:
            model (nn.Module): MOT model.
            img (Tensor): of shape (T, C, H, W) encoding input image.
                Typically these should be mean centered and std scaled.
                The T denotes the number of key images and usually is 1 in
                SORT method.
            feats (list[Tensor]): Multi level feature maps of `img`.
            data_sample (:obj:`TrackDataSample`): The data sample.
                It includes information such as `pred_det_instances`.
            data_preprocessor (dict or ConfigDict, optional): The pre-process
               config of :class:`TrackDataPreprocessor`.  it usually includes,
                ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``.
            rescale (bool, optional): If True, the bounding boxes should be
                rescaled to fit the original scale of the image. Defaults to
                False.

        Returns:
            :obj:`InstanceData`: Tracking results of the input images.
            Each InstanceData usually contains ``bboxes``, ``labels``,
            ``scores`` and ``instances_id``.
        """
        metainfo = data_sample.metainfo
        bboxes = data_sample.pred_instances.bboxes
        labels = data_sample.pred_instances.labels
        scores = data_sample.pred_instances.scores

        frame_id = metainfo.get('frame_id', -1)
        if frame_id == 0:
            self.reset()
        if not hasattr(self, 'kf'):
            self.kf = self.motion

        if self.with_reid:
            if self.reid.get('img_norm_cfg', False):
                img_norm_cfg = dict(
                    mean=data_preprocessor.get('mean', [0, 0, 0]),
                    std=data_preprocessor.get('std', [1, 1, 1]),
                    to_bgr=data_preprocessor.get('rgb_to_bgr', False))
                reid_img = imrenormalize(img, img_norm_cfg,
                                         self.reid['img_norm_cfg'])
            else:
                reid_img = img.clone()

        valid_inds = scores > self.obj_score_thr
        bboxes = bboxes[valid_inds]
        labels = labels[valid_inds]
        scores = scores[valid_inds]

        if self.empty or bboxes.size(0) == 0:
            num_new_tracks = bboxes.size(0)
            ids = torch.arange(
                self.num_tracks,
                self.num_tracks + num_new_tracks,
                dtype=torch.long).to(bboxes.device)
            self.num_tracks += num_new_tracks
            if self.with_reid:
                crops = self.crop_imgs(reid_img, metainfo, bboxes.clone(),
                                       rescale)
                if crops.size(0) > 0:
                    embeds = model.reid(crops, mode='tensor')
                else:
                    embeds = crops.new_zeros((0, model.reid.head.out_channels))
        else:
            ids = torch.full((bboxes.size(0), ), -1,
                             dtype=torch.long).to(bboxes.device)

            # motion
            if model.with_cmc:
                num_samples = 1
                self.tracks = model.cmc.track(self.last_img, img, self.tracks,
                                              num_samples, frame_id, metainfo)

            self.tracks, motion_dists = self.motion.track(
                self.tracks, bbox_xyxy_to_cxcyah(bboxes))

            active_ids = self.confirmed_ids
            if self.with_reid:
                crops = self.crop_imgs(reid_img, metainfo, bboxes.clone(),
                                       rescale)
                embeds = model.reid(crops, mode='tensor')

                # reid
                if len(active_ids) > 0:
                    track_embeds = self.get(
                        'embeds',
                        active_ids,
                        self.reid.get('num_samples', None),
                        behavior='mean')
                    reid_dists = cosine_distance(track_embeds, embeds)
                    valid_inds = [list(self.ids).index(_) for _ in active_ids]
                    reid_dists[~np.isfinite(motion_dists[
                        valid_inds, :])] = np.nan

                    weight_motion = self.reid.get('motion_weight')
                    match_dists = (1 - weight_motion) * reid_dists + \
                        weight_motion * motion_dists[valid_inds]

                    # support multi-class association
                    track_labels = torch.tensor([
                        self.tracks[id]['labels'][-1] for id in active_ids
                    ]).to(bboxes.device)
                    cate_match = labels[None, :] == track_labels[:, None]
                    cate_cost = ((1 - cate_match.int()) * 1e6).cpu().numpy()
                    match_dists = match_dists + cate_cost

                    row, col = linear_sum_assignment(match_dists)
                    for r, c in zip(row, col):
                        dist = match_dists[r, c]
                        if not np.isfinite(dist):
                            continue
                        if dist <= self.reid['match_score_thr']:
                            ids[c] = active_ids[r]

            active_ids = [
                id for id in self.ids if id not in ids
                and self.tracks[id].frame_ids[-1] == frame_id - 1
            ]
            if len(active_ids) > 0:
                active_dets = torch.nonzero(ids == -1).squeeze(1)
                track_bboxes = self.get('bboxes', active_ids)
                ious = bbox_overlaps(track_bboxes, bboxes[active_dets])

                # support multi-class association
                track_labels = torch.tensor([
                    self.tracks[id]['labels'][-1] for id in active_ids
                ]).to(bboxes.device)
                cate_match = labels[None, active_dets] == track_labels[:, None]
                cate_cost = (1 - cate_match.int()) * 1e6

                dists = (1 - ious + cate_cost).cpu().numpy()

                row, col = linear_sum_assignment(dists)
                for r, c in zip(row, col):
                    dist = dists[r, c]
                    if dist < 1 - self.match_iou_thr:
                        ids[active_dets[c]] = active_ids[r]

            new_track_inds = ids == -1
            ids[new_track_inds] = torch.arange(
                self.num_tracks,
                self.num_tracks + new_track_inds.sum(),
                dtype=torch.long).to(bboxes.device)
            self.num_tracks += new_track_inds.sum()

        self.update(
            ids=ids,
            bboxes=bboxes,
            scores=scores,
            labels=labels,
            embeds=embeds if self.with_reid else None,
            frame_ids=frame_id)
        self.last_img = img

        # update pred_track_instances
        pred_track_instances = InstanceData()
        pred_track_instances.bboxes = bboxes
        pred_track_instances.labels = labels
        pred_track_instances.scores = scores
        pred_track_instances.instances_id = ids

        return pred_track_instances