File size: 11,894 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention
from mmcv.ops import MultiScaleDeformableAttention
from mmengine.model import ModuleList
from torch import Tensor

from mmdet.models.utils.vlfuse_helper import SingleScaleBiAttentionBlock
from mmdet.utils import ConfigType, OptConfigType
from .deformable_detr_layers import (DeformableDetrTransformerDecoderLayer,
                                     DeformableDetrTransformerEncoder,
                                     DeformableDetrTransformerEncoderLayer)
from .detr_layers import DetrTransformerEncoderLayer
from .dino_layers import DinoTransformerDecoder
from .utils import MLP, get_text_sine_pos_embed

try:
    from fairscale.nn.checkpoint import checkpoint_wrapper
except Exception:
    checkpoint_wrapper = None


class GroundingDinoTransformerDecoderLayer(
        DeformableDetrTransformerDecoderLayer):

    def __init__(self,
                 cross_attn_text_cfg: OptConfigType = dict(
                     embed_dims=256,
                     num_heads=8,
                     dropout=0.0,
                     batch_first=True),
                 **kwargs) -> None:
        """Decoder layer of Deformable DETR."""
        self.cross_attn_text_cfg = cross_attn_text_cfg
        if 'batch_first' not in self.cross_attn_text_cfg:
            self.cross_attn_text_cfg['batch_first'] = True
        super().__init__(**kwargs)

    def _init_layers(self) -> None:
        """Initialize self_attn, cross-attn, ffn, and norms."""
        self.self_attn = MultiheadAttention(**self.self_attn_cfg)
        self.cross_attn_text = MultiheadAttention(**self.cross_attn_text_cfg)
        self.cross_attn = MultiScaleDeformableAttention(**self.cross_attn_cfg)
        self.embed_dims = self.self_attn.embed_dims
        self.ffn = FFN(**self.ffn_cfg)
        norms_list = [
            build_norm_layer(self.norm_cfg, self.embed_dims)[1]
            for _ in range(4)
        ]
        self.norms = ModuleList(norms_list)

    def forward(self,
                query: Tensor,
                key: Tensor = None,
                value: Tensor = None,
                query_pos: Tensor = None,
                key_pos: Tensor = None,
                self_attn_mask: Tensor = None,
                cross_attn_mask: Tensor = None,
                key_padding_mask: Tensor = None,
                memory_text: Tensor = None,
                text_attention_mask: Tensor = None,
                **kwargs) -> Tensor:
        """Implements decoder layer in Grounding DINO transformer.

        Args:
            query (Tensor): The input query, has shape (bs, num_queries, dim).
            key (Tensor, optional): The input key, has shape (bs, num_keys,
                dim). If `None`, the `query` will be used. Defaults to `None`.
            value (Tensor, optional): The input value, has the same shape as
                `key`, as in `nn.MultiheadAttention.forward`. If `None`, the
                `key` will be used. Defaults to `None`.
            query_pos (Tensor, optional): The positional encoding for `query`,
                has the same shape as `query`. If not `None`, it will be added
                to `query` before forward function. Defaults to `None`.
            key_pos (Tensor, optional): The positional encoding for `key`, has
                the same shape as `key`. If not `None`, it will be added to
                `key` before forward function. If None, and `query_pos` has the
                same shape as `key`, then `query_pos` will be used for
                `key_pos`. Defaults to None.
            self_attn_mask (Tensor, optional): ByteTensor mask, has shape
                (num_queries, num_keys), as in `nn.MultiheadAttention.forward`.
                Defaults to None.
            cross_attn_mask (Tensor, optional): ByteTensor mask, has shape
                (num_queries, num_keys), as in `nn.MultiheadAttention.forward`.
                Defaults to None.
            key_padding_mask (Tensor, optional): The `key_padding_mask` of
                `self_attn` input. ByteTensor, has shape (bs, num_value).
                Defaults to None.
            memory_text (Tensor): Memory text. It has shape (bs, len_text,
                text_embed_dims).
            text_attention_mask (Tensor): Text token mask. It has shape (bs,
                len_text).

        Returns:
            Tensor: forwarded results, has shape (bs, num_queries, dim).
        """
        # self attention
        query = self.self_attn(
            query=query,
            key=query,
            value=query,
            query_pos=query_pos,
            key_pos=query_pos,
            attn_mask=self_attn_mask,
            **kwargs)
        query = self.norms[0](query)
        # cross attention between query and text
        query = self.cross_attn_text(
            query=query,
            query_pos=query_pos,
            key=memory_text,
            value=memory_text,
            key_padding_mask=text_attention_mask)
        query = self.norms[1](query)
        # cross attention between query and image
        query = self.cross_attn(
            query=query,
            key=key,
            value=value,
            query_pos=query_pos,
            key_pos=key_pos,
            attn_mask=cross_attn_mask,
            key_padding_mask=key_padding_mask,
            **kwargs)
        query = self.norms[2](query)
        query = self.ffn(query)
        query = self.norms[3](query)

        return query


class GroundingDinoTransformerEncoder(DeformableDetrTransformerEncoder):

    def __init__(self, text_layer_cfg: ConfigType,
                 fusion_layer_cfg: ConfigType, **kwargs) -> None:
        self.text_layer_cfg = text_layer_cfg
        self.fusion_layer_cfg = fusion_layer_cfg
        super().__init__(**kwargs)

    def _init_layers(self) -> None:
        """Initialize encoder layers."""
        self.layers = ModuleList([
            DeformableDetrTransformerEncoderLayer(**self.layer_cfg)
            for _ in range(self.num_layers)
        ])
        self.text_layers = ModuleList([
            DetrTransformerEncoderLayer(**self.text_layer_cfg)
            for _ in range(self.num_layers)
        ])
        self.fusion_layers = ModuleList([
            SingleScaleBiAttentionBlock(**self.fusion_layer_cfg)
            for _ in range(self.num_layers)
        ])
        self.embed_dims = self.layers[0].embed_dims
        if self.num_cp > 0:
            if checkpoint_wrapper is None:
                raise NotImplementedError(
                    'If you want to reduce GPU memory usage, \
                    please install fairscale by executing the \
                    following command: pip install fairscale.')
            for i in range(self.num_cp):
                self.layers[i] = checkpoint_wrapper(self.layers[i])
                self.fusion_layers[i] = checkpoint_wrapper(
                    self.fusion_layers[i])

    def forward(self,
                query: Tensor,
                query_pos: Tensor,
                key_padding_mask: Tensor,
                spatial_shapes: Tensor,
                level_start_index: Tensor,
                valid_ratios: Tensor,
                memory_text: Tensor = None,
                text_attention_mask: Tensor = None,
                pos_text: Tensor = None,
                text_self_attention_masks: Tensor = None,
                position_ids: Tensor = None):
        """Forward function of Transformer encoder.

        Args:
            query (Tensor): The input query, has shape (bs, num_queries, dim).
            query_pos (Tensor): The positional encoding for query, has shape
                (bs, num_queries, dim).
            key_padding_mask (Tensor): The `key_padding_mask` of `self_attn`
                input. ByteTensor, has shape (bs, num_queries).
            spatial_shapes (Tensor): Spatial shapes of features in all levels,
                has shape (num_levels, 2), last dimension represents (h, w).
            level_start_index (Tensor): The start index of each level.
                A tensor has shape (num_levels, ) and can be represented
                as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
            valid_ratios (Tensor): The ratios of the valid width and the valid
                height relative to the width and the height of features in all
                levels, has shape (bs, num_levels, 2).
            memory_text (Tensor, optional): Memory text. It has shape (bs,
                len_text, text_embed_dims).
            text_attention_mask (Tensor, optional): Text token mask. It has
                shape (bs,len_text).
            pos_text (Tensor, optional): The positional encoding for text.
                Defaults to None.
            text_self_attention_masks (Tensor, optional): Text self attention
                mask. Defaults to None.
            position_ids (Tensor, optional): Text position ids.
                Defaults to None.
        """
        output = query
        reference_points = self.get_encoder_reference_points(
            spatial_shapes, valid_ratios, device=query.device)
        if self.text_layers:
            # generate pos_text
            bs, n_text, _ = memory_text.shape
            if pos_text is None and position_ids is None:
                pos_text = (
                    torch.arange(n_text,
                                 device=memory_text.device).float().unsqueeze(
                                     0).unsqueeze(-1).repeat(bs, 1, 1))
                pos_text = get_text_sine_pos_embed(
                    pos_text, num_pos_feats=256, exchange_xy=False)
            if position_ids is not None:
                pos_text = get_text_sine_pos_embed(
                    position_ids[..., None],
                    num_pos_feats=256,
                    exchange_xy=False)

        # main process
        for layer_id, layer in enumerate(self.layers):
            if self.fusion_layers:
                output, memory_text = self.fusion_layers[layer_id](
                    visual_feature=output,
                    lang_feature=memory_text,
                    attention_mask_v=key_padding_mask,
                    attention_mask_l=text_attention_mask,
                )
            if self.text_layers:
                text_num_heads = self.text_layers[
                    layer_id].self_attn_cfg.num_heads
                memory_text = self.text_layers[layer_id](
                    query=memory_text,
                    query_pos=(pos_text if pos_text is not None else None),
                    attn_mask=~text_self_attention_masks.repeat(
                        text_num_heads, 1, 1),  # note we use ~ for mask here
                    key_padding_mask=None,
                )
            output = layer(
                query=output,
                query_pos=query_pos,
                reference_points=reference_points,
                spatial_shapes=spatial_shapes,
                level_start_index=level_start_index,
                key_padding_mask=key_padding_mask)
        return output, memory_text


class GroundingDinoTransformerDecoder(DinoTransformerDecoder):

    def _init_layers(self) -> None:
        """Initialize decoder layers."""
        self.layers = ModuleList([
            GroundingDinoTransformerDecoderLayer(**self.layer_cfg)
            for _ in range(self.num_layers)
        ])
        self.embed_dims = self.layers[0].embed_dims
        if self.post_norm_cfg is not None:
            raise ValueError('There is not post_norm in '
                             f'{self._get_name()}')
        self.ref_point_head = MLP(self.embed_dims * 2, self.embed_dims,
                                  self.embed_dims, 2)
        self.norm = nn.LayerNorm(self.embed_dims)