File size: 7,213 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) OpenMMLab. All rights reserved.

# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
# mmcv >= 2.0.1
# mmengine >= 0.8.0

from mmengine.config import read_base

with read_base():
    from .._base_.default_runtime import *
    from .._base_.schedules.schedule_1x import *
    from .._base_.datasets.coco_detection import *
    from .rtmdet_tta import *

from mmcv.ops import nms
from mmcv.transforms.loading import LoadImageFromFile
from mmcv.transforms.processing import RandomResize
from mmengine.hooks.ema_hook import EMAHook
from mmengine.optim.optimizer.optimizer_wrapper import OptimWrapper
from mmengine.optim.scheduler.lr_scheduler import CosineAnnealingLR, LinearLR
from torch.nn import SyncBatchNorm
from torch.nn.modules.activation import SiLU
from torch.optim.adamw import AdamW

from mmdet.datasets.transforms.formatting import PackDetInputs
from mmdet.datasets.transforms.loading import LoadAnnotations
from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic,
                                                  Pad, RandomCrop, RandomFlip,
                                                  Resize, YOLOXHSVRandomAug)
from mmdet.engine.hooks.pipeline_switch_hook import PipelineSwitchHook
from mmdet.models.backbones.cspnext import CSPNeXt
from mmdet.models.data_preprocessors.data_preprocessor import \
    DetDataPreprocessor
from mmdet.models.dense_heads.rtmdet_head import RTMDetSepBNHead
from mmdet.models.detectors.rtmdet import RTMDet
from mmdet.models.layers.ema import ExpMomentumEMA
from mmdet.models.losses.gfocal_loss import QualityFocalLoss
from mmdet.models.losses.iou_loss import GIoULoss
from mmdet.models.necks.cspnext_pafpn import CSPNeXtPAFPN
from mmdet.models.task_modules.assigners.dynamic_soft_label_assigner import \
    DynamicSoftLabelAssigner
from mmdet.models.task_modules.coders.distance_point_bbox_coder import \
    DistancePointBBoxCoder
from mmdet.models.task_modules.prior_generators.point_generator import \
    MlvlPointGenerator

model = dict(
    type=RTMDet,
    data_preprocessor=dict(
        type=DetDataPreprocessor,
        mean=[103.53, 116.28, 123.675],
        std=[57.375, 57.12, 58.395],
        bgr_to_rgb=False,
        batch_augments=None),
    backbone=dict(
        type=CSPNeXt,
        arch='P5',
        expand_ratio=0.5,
        deepen_factor=1,
        widen_factor=1,
        channel_attention=True,
        norm_cfg=dict(type=SyncBatchNorm),
        act_cfg=dict(type=SiLU, inplace=True)),
    neck=dict(
        type=CSPNeXtPAFPN,
        in_channels=[256, 512, 1024],
        out_channels=256,
        num_csp_blocks=3,
        expand_ratio=0.5,
        norm_cfg=dict(type=SyncBatchNorm),
        act_cfg=dict(type=SiLU, inplace=True)),
    bbox_head=dict(
        type=RTMDetSepBNHead,
        num_classes=80,
        in_channels=256,
        stacked_convs=2,
        feat_channels=256,
        anchor_generator=dict(
            type=MlvlPointGenerator, offset=0, strides=[8, 16, 32]),
        bbox_coder=dict(type=DistancePointBBoxCoder),
        loss_cls=dict(
            type=QualityFocalLoss, use_sigmoid=True, beta=2.0,
            loss_weight=1.0),
        loss_bbox=dict(type=GIoULoss, loss_weight=2.0),
        with_objectness=False,
        exp_on_reg=True,
        share_conv=True,
        pred_kernel_size=1,
        norm_cfg=dict(type=SyncBatchNorm),
        act_cfg=dict(type=SiLU, inplace=True)),
    train_cfg=dict(
        assigner=dict(type=DynamicSoftLabelAssigner, topk=13),
        allowed_border=-1,
        pos_weight=-1,
        debug=False),
    test_cfg=dict(
        nms_pre=30000,
        min_bbox_size=0,
        score_thr=0.001,
        nms=dict(type=nms, iou_threshold=0.65),
        max_per_img=300),
)

train_pipeline = [
    dict(type=LoadImageFromFile, backend_args=backend_args),
    dict(type=LoadAnnotations, with_bbox=True),
    dict(type=CachedMosaic, img_scale=(640, 640), pad_val=114.0),
    dict(
        type=RandomResize,
        scale=(1280, 1280),
        ratio_range=(0.1, 2.0),
        resize_type=Resize,
        keep_ratio=True),
    dict(type=RandomCrop, crop_size=(640, 640)),
    dict(type=YOLOXHSVRandomAug),
    dict(type=RandomFlip, prob=0.5),
    dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))),
    dict(
        type=CachedMixUp,
        img_scale=(640, 640),
        ratio_range=(1.0, 1.0),
        max_cached_images=20,
        pad_val=(114, 114, 114)),
    dict(type=PackDetInputs)
]

train_pipeline_stage2 = [
    dict(type=LoadImageFromFile, backend_args=backend_args),
    dict(type=LoadAnnotations, with_bbox=True),
    dict(
        type=RandomResize,
        scale=(640, 640),
        ratio_range=(0.1, 2.0),
        resize_type=Resize,
        keep_ratio=True),
    dict(type=RandomCrop, crop_size=(640, 640)),
    dict(type=YOLOXHSVRandomAug),
    dict(type=RandomFlip, prob=0.5),
    dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))),
    dict(type=PackDetInputs)
]

test_pipeline = [
    dict(type=LoadImageFromFile, backend_args=backend_args),
    dict(type=Resize, scale=(640, 640), keep_ratio=True),
    dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))),
    dict(type=LoadAnnotations, with_bbox=True),
    dict(
        type=PackDetInputs,
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]

train_dataloader.update(
    dict(
        batch_size=32,
        num_workers=10,
        batch_sampler=None,
        pin_memory=True,
        dataset=dict(pipeline=train_pipeline)))
val_dataloader.update(
    dict(batch_size=5, num_workers=10, dataset=dict(pipeline=test_pipeline)))
test_dataloader = val_dataloader

max_epochs = 300
stage2_num_epochs = 20
base_lr = 0.004
interval = 10

train_cfg.update(
    dict(
        max_epochs=max_epochs,
        val_interval=interval,
        dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)]))

val_evaluator.update(dict(proposal_nums=(100, 1, 10)))
test_evaluator = val_evaluator

# optimizer
optim_wrapper = dict(
    type=OptimWrapper,
    optimizer=dict(type=AdamW, lr=base_lr, weight_decay=0.05),
    paramwise_cfg=dict(
        norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))

# learning rate
param_scheduler = [
    dict(
        type=LinearLR, start_factor=1.0e-5, by_epoch=False, begin=0, end=1000),
    dict(
        # use cosine lr from 150 to 300 epoch
        type=CosineAnnealingLR,
        eta_min=base_lr * 0.05,
        begin=max_epochs // 2,
        end=max_epochs,
        T_max=max_epochs // 2,
        by_epoch=True,
        convert_to_iter_based=True),
]

# hooks
default_hooks.update(
    dict(
        checkpoint=dict(
            interval=interval,
            max_keep_ckpts=3  # only keep latest 3 checkpoints
        )))

custom_hooks = [
    dict(
        type=EMAHook,
        ema_type=ExpMomentumEMA,
        momentum=0.0002,
        update_buffers=True,
        priority=49),
    dict(
        type=PipelineSwitchHook,
        switch_epoch=max_epochs - stage2_num_epochs,
        switch_pipeline=train_pipeline_stage2)
]