Spaces:
Runtime error
Runtime error
File size: 7,213 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# Copyright (c) OpenMMLab. All rights reserved.
# Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
# mmcv >= 2.0.1
# mmengine >= 0.8.0
from mmengine.config import read_base
with read_base():
from .._base_.default_runtime import *
from .._base_.schedules.schedule_1x import *
from .._base_.datasets.coco_detection import *
from .rtmdet_tta import *
from mmcv.ops import nms
from mmcv.transforms.loading import LoadImageFromFile
from mmcv.transforms.processing import RandomResize
from mmengine.hooks.ema_hook import EMAHook
from mmengine.optim.optimizer.optimizer_wrapper import OptimWrapper
from mmengine.optim.scheduler.lr_scheduler import CosineAnnealingLR, LinearLR
from torch.nn import SyncBatchNorm
from torch.nn.modules.activation import SiLU
from torch.optim.adamw import AdamW
from mmdet.datasets.transforms.formatting import PackDetInputs
from mmdet.datasets.transforms.loading import LoadAnnotations
from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic,
Pad, RandomCrop, RandomFlip,
Resize, YOLOXHSVRandomAug)
from mmdet.engine.hooks.pipeline_switch_hook import PipelineSwitchHook
from mmdet.models.backbones.cspnext import CSPNeXt
from mmdet.models.data_preprocessors.data_preprocessor import \
DetDataPreprocessor
from mmdet.models.dense_heads.rtmdet_head import RTMDetSepBNHead
from mmdet.models.detectors.rtmdet import RTMDet
from mmdet.models.layers.ema import ExpMomentumEMA
from mmdet.models.losses.gfocal_loss import QualityFocalLoss
from mmdet.models.losses.iou_loss import GIoULoss
from mmdet.models.necks.cspnext_pafpn import CSPNeXtPAFPN
from mmdet.models.task_modules.assigners.dynamic_soft_label_assigner import \
DynamicSoftLabelAssigner
from mmdet.models.task_modules.coders.distance_point_bbox_coder import \
DistancePointBBoxCoder
from mmdet.models.task_modules.prior_generators.point_generator import \
MlvlPointGenerator
model = dict(
type=RTMDet,
data_preprocessor=dict(
type=DetDataPreprocessor,
mean=[103.53, 116.28, 123.675],
std=[57.375, 57.12, 58.395],
bgr_to_rgb=False,
batch_augments=None),
backbone=dict(
type=CSPNeXt,
arch='P5',
expand_ratio=0.5,
deepen_factor=1,
widen_factor=1,
channel_attention=True,
norm_cfg=dict(type=SyncBatchNorm),
act_cfg=dict(type=SiLU, inplace=True)),
neck=dict(
type=CSPNeXtPAFPN,
in_channels=[256, 512, 1024],
out_channels=256,
num_csp_blocks=3,
expand_ratio=0.5,
norm_cfg=dict(type=SyncBatchNorm),
act_cfg=dict(type=SiLU, inplace=True)),
bbox_head=dict(
type=RTMDetSepBNHead,
num_classes=80,
in_channels=256,
stacked_convs=2,
feat_channels=256,
anchor_generator=dict(
type=MlvlPointGenerator, offset=0, strides=[8, 16, 32]),
bbox_coder=dict(type=DistancePointBBoxCoder),
loss_cls=dict(
type=QualityFocalLoss, use_sigmoid=True, beta=2.0,
loss_weight=1.0),
loss_bbox=dict(type=GIoULoss, loss_weight=2.0),
with_objectness=False,
exp_on_reg=True,
share_conv=True,
pred_kernel_size=1,
norm_cfg=dict(type=SyncBatchNorm),
act_cfg=dict(type=SiLU, inplace=True)),
train_cfg=dict(
assigner=dict(type=DynamicSoftLabelAssigner, topk=13),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=30000,
min_bbox_size=0,
score_thr=0.001,
nms=dict(type=nms, iou_threshold=0.65),
max_per_img=300),
)
train_pipeline = [
dict(type=LoadImageFromFile, backend_args=backend_args),
dict(type=LoadAnnotations, with_bbox=True),
dict(type=CachedMosaic, img_scale=(640, 640), pad_val=114.0),
dict(
type=RandomResize,
scale=(1280, 1280),
ratio_range=(0.1, 2.0),
resize_type=Resize,
keep_ratio=True),
dict(type=RandomCrop, crop_size=(640, 640)),
dict(type=YOLOXHSVRandomAug),
dict(type=RandomFlip, prob=0.5),
dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(
type=CachedMixUp,
img_scale=(640, 640),
ratio_range=(1.0, 1.0),
max_cached_images=20,
pad_val=(114, 114, 114)),
dict(type=PackDetInputs)
]
train_pipeline_stage2 = [
dict(type=LoadImageFromFile, backend_args=backend_args),
dict(type=LoadAnnotations, with_bbox=True),
dict(
type=RandomResize,
scale=(640, 640),
ratio_range=(0.1, 2.0),
resize_type=Resize,
keep_ratio=True),
dict(type=RandomCrop, crop_size=(640, 640)),
dict(type=YOLOXHSVRandomAug),
dict(type=RandomFlip, prob=0.5),
dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(type=PackDetInputs)
]
test_pipeline = [
dict(type=LoadImageFromFile, backend_args=backend_args),
dict(type=Resize, scale=(640, 640), keep_ratio=True),
dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(type=LoadAnnotations, with_bbox=True),
dict(
type=PackDetInputs,
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader.update(
dict(
batch_size=32,
num_workers=10,
batch_sampler=None,
pin_memory=True,
dataset=dict(pipeline=train_pipeline)))
val_dataloader.update(
dict(batch_size=5, num_workers=10, dataset=dict(pipeline=test_pipeline)))
test_dataloader = val_dataloader
max_epochs = 300
stage2_num_epochs = 20
base_lr = 0.004
interval = 10
train_cfg.update(
dict(
max_epochs=max_epochs,
val_interval=interval,
dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)]))
val_evaluator.update(dict(proposal_nums=(100, 1, 10)))
test_evaluator = val_evaluator
# optimizer
optim_wrapper = dict(
type=OptimWrapper,
optimizer=dict(type=AdamW, lr=base_lr, weight_decay=0.05),
paramwise_cfg=dict(
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
# learning rate
param_scheduler = [
dict(
type=LinearLR, start_factor=1.0e-5, by_epoch=False, begin=0, end=1000),
dict(
# use cosine lr from 150 to 300 epoch
type=CosineAnnealingLR,
eta_min=base_lr * 0.05,
begin=max_epochs // 2,
end=max_epochs,
T_max=max_epochs // 2,
by_epoch=True,
convert_to_iter_based=True),
]
# hooks
default_hooks.update(
dict(
checkpoint=dict(
interval=interval,
max_keep_ckpts=3 # only keep latest 3 checkpoints
)))
custom_hooks = [
dict(
type=EMAHook,
ema_type=ExpMomentumEMA,
momentum=0.0002,
update_buffers=True,
priority=49),
dict(
type=PipelineSwitchHook,
switch_epoch=max_epochs - stage2_num_epochs,
switch_pipeline=train_pipeline_stage2)
]
|