Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Tuple, Union | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule | |
from mmdet.utils import ConfigType, OptMultiConfig | |
from mmyolo.models.backbones import BaseBackbone | |
from mmyolo.models.layers.yolo_bricks import CSPResLayer | |
from mmyolo.registry import MODELS | |
class PPYOLOECSPResNet(BaseBackbone): | |
"""CSP-ResNet backbone used in PPYOLOE. | |
Args: | |
arch (str): Architecture of CSPNeXt, from {P5, P6}. | |
Defaults to P5. | |
deepen_factor (float): Depth multiplier, multiply number of | |
blocks in CSP layer by this amount. Defaults to 1.0. | |
widen_factor (float): Width multiplier, multiply number of | |
channels in each layer by this amount. Defaults to 1.0. | |
out_indices (Sequence[int]): Output from which stages. | |
Defaults to (2, 3, 4). | |
frozen_stages (int): Stages to be frozen (stop grad and set eval | |
mode). -1 means not freezing any parameters. Defaults to -1. | |
plugins (list[dict]): List of plugins for stages, each dict contains: | |
- cfg (dict, required): Cfg dict to build plugin. | |
- stages (tuple[bool], optional): Stages to apply plugin, length | |
should be same as 'num_stages'. | |
arch_ovewrite (list): Overwrite default arch settings. | |
Defaults to None. | |
block_cfg (dict): Config dict for block. Defaults to | |
dict(type='PPYOLOEBasicBlock', shortcut=True, use_alpha=True) | |
norm_cfg (:obj:`ConfigDict` or dict): Dictionary to construct and | |
config norm layer. Defaults to dict(type='BN', momentum=0.1, | |
eps=1e-5). | |
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer. | |
Defaults to dict(type='SiLU', inplace=True). | |
attention_cfg (dict): Config dict for `EffectiveSELayer`. | |
Defaults to dict(type='EffectiveSELayer', | |
act_cfg=dict(type='HSigmoid')). | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. | |
init_cfg (:obj:`ConfigDict` or dict or list[dict] or | |
list[:obj:`ConfigDict`]): Initialization config dict. | |
use_large_stem (bool): Whether to use large stem layer. | |
Defaults to False. | |
""" | |
# From left to right: | |
# in_channels, out_channels, num_blocks | |
arch_settings = { | |
'P5': [[64, 128, 3], [128, 256, 6], [256, 512, 6], [512, 1024, 3]] | |
} | |
def __init__(self, | |
arch: str = 'P5', | |
deepen_factor: float = 1.0, | |
widen_factor: float = 1.0, | |
input_channels: int = 3, | |
out_indices: Tuple[int] = (2, 3, 4), | |
frozen_stages: int = -1, | |
plugins: Union[dict, List[dict]] = None, | |
arch_ovewrite: dict = None, | |
block_cfg: ConfigType = dict( | |
type='PPYOLOEBasicBlock', shortcut=True, use_alpha=True), | |
norm_cfg: ConfigType = dict( | |
type='BN', momentum=0.1, eps=1e-5), | |
act_cfg: ConfigType = dict(type='SiLU', inplace=True), | |
attention_cfg: ConfigType = dict( | |
type='EffectiveSELayer', act_cfg=dict(type='HSigmoid')), | |
norm_eval: bool = False, | |
init_cfg: OptMultiConfig = None, | |
use_large_stem: bool = False): | |
arch_setting = self.arch_settings[arch] | |
if arch_ovewrite: | |
arch_setting = arch_ovewrite | |
arch_setting = [[ | |
int(in_channels * widen_factor), | |
int(out_channels * widen_factor), | |
round(num_blocks * deepen_factor) | |
] for in_channels, out_channels, num_blocks in arch_setting] | |
self.block_cfg = block_cfg | |
self.use_large_stem = use_large_stem | |
self.attention_cfg = attention_cfg | |
super().__init__( | |
arch_setting, | |
deepen_factor, | |
widen_factor, | |
input_channels=input_channels, | |
out_indices=out_indices, | |
plugins=plugins, | |
frozen_stages=frozen_stages, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
norm_eval=norm_eval, | |
init_cfg=init_cfg) | |
def build_stem_layer(self) -> nn.Module: | |
"""Build a stem layer.""" | |
if self.use_large_stem: | |
stem = nn.Sequential( | |
ConvModule( | |
self.input_channels, | |
self.arch_setting[0][0] // 2, | |
3, | |
stride=2, | |
padding=1, | |
act_cfg=self.act_cfg, | |
norm_cfg=self.norm_cfg), | |
ConvModule( | |
self.arch_setting[0][0] // 2, | |
self.arch_setting[0][0] // 2, | |
3, | |
stride=1, | |
padding=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg), | |
ConvModule( | |
self.arch_setting[0][0] // 2, | |
self.arch_setting[0][0], | |
3, | |
stride=1, | |
padding=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
else: | |
stem = nn.Sequential( | |
ConvModule( | |
self.input_channels, | |
self.arch_setting[0][0] // 2, | |
3, | |
stride=2, | |
padding=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg), | |
ConvModule( | |
self.arch_setting[0][0] // 2, | |
self.arch_setting[0][0], | |
3, | |
stride=1, | |
padding=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
return stem | |
def build_stage_layer(self, stage_idx: int, setting: list) -> list: | |
"""Build a stage layer. | |
Args: | |
stage_idx (int): The index of a stage layer. | |
setting (list): The architecture setting of a stage layer. | |
""" | |
in_channels, out_channels, num_blocks = setting | |
cspres_layer = CSPResLayer( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
num_block=num_blocks, | |
block_cfg=self.block_cfg, | |
stride=2, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg, | |
attention_cfg=self.attention_cfg, | |
use_spp=False) | |
return [cspres_layer] | |