File size: 10,763 Bytes
3094730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmdet.utils import ConfigType, OptMultiConfig

from mmyolo.registry import MODELS
from ..layers import BepC3StageBlock, RepStageBlock
from ..utils import make_round
from .base_yolo_neck import BaseYOLONeck


@MODELS.register_module()
class YOLOv6RepPAFPN(BaseYOLONeck):
    """Path Aggregation Network used in YOLOv6.

    Args:
        in_channels (List[int]): Number of input channels per scale.
        out_channels (int): Number of output channels (used at each scale)
        deepen_factor (float): Depth multiplier, multiply number of
            blocks in CSP layer by this amount. Defaults to 1.0.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Defaults to 1.0.
        num_csp_blocks (int): Number of bottlenecks in CSPLayer. Defaults to 1.
        freeze_all(bool): Whether to freeze the model.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to dict(type='BN', momentum=0.03, eps=0.001).
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='ReLU', inplace=True).
        block_cfg (dict): Config dict for the block used to build each
            layer. Defaults to dict(type='RepVGGBlock').
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 in_channels: List[int],
                 out_channels: int,
                 deepen_factor: float = 1.0,
                 widen_factor: float = 1.0,
                 num_csp_blocks: int = 12,
                 freeze_all: bool = False,
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='ReLU', inplace=True),
                 block_cfg: ConfigType = dict(type='RepVGGBlock'),
                 init_cfg: OptMultiConfig = None):
        self.num_csp_blocks = num_csp_blocks
        self.block_cfg = block_cfg
        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            deepen_factor=deepen_factor,
            widen_factor=widen_factor,
            freeze_all=freeze_all,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            init_cfg=init_cfg)

    def build_reduce_layer(self, idx: int) -> nn.Module:
        """build reduce layer.

        Args:
            idx (int): layer idx.
        Returns:
            nn.Module: The reduce layer.
        """
        if idx == 2:
            layer = ConvModule(
                in_channels=int(self.in_channels[idx] * self.widen_factor),
                out_channels=int(self.out_channels[idx - 1] *
                                 self.widen_factor),
                kernel_size=1,
                stride=1,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg)
        else:
            layer = nn.Identity()

        return layer

    def build_upsample_layer(self, idx: int) -> nn.Module:
        """build upsample layer.

        Args:
            idx (int): layer idx.
        Returns:
            nn.Module: The upsample layer.
        """
        return nn.ConvTranspose2d(
            in_channels=int(self.out_channels[idx - 1] * self.widen_factor),
            out_channels=int(self.out_channels[idx - 1] * self.widen_factor),
            kernel_size=2,
            stride=2,
            bias=True)

    def build_top_down_layer(self, idx: int) -> nn.Module:
        """build top down layer.

        Args:
            idx (int): layer idx.
        Returns:
            nn.Module: The top down layer.
        """
        block_cfg = self.block_cfg.copy()

        layer0 = RepStageBlock(
            in_channels=int(
                (self.out_channels[idx - 1] + self.in_channels[idx - 1]) *
                self.widen_factor),
            out_channels=int(self.out_channels[idx - 1] * self.widen_factor),
            num_blocks=make_round(self.num_csp_blocks, self.deepen_factor),
            block_cfg=block_cfg)

        if idx == 1:
            return layer0
        elif idx == 2:
            layer1 = ConvModule(
                in_channels=int(self.out_channels[idx - 1] *
                                self.widen_factor),
                out_channels=int(self.out_channels[idx - 2] *
                                 self.widen_factor),
                kernel_size=1,
                stride=1,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg)
            return nn.Sequential(layer0, layer1)

    def build_downsample_layer(self, idx: int) -> nn.Module:
        """build downsample layer.

        Args:
            idx (int): layer idx.
        Returns:
            nn.Module: The downsample layer.
        """
        return ConvModule(
            in_channels=int(self.out_channels[idx] * self.widen_factor),
            out_channels=int(self.out_channels[idx] * self.widen_factor),
            kernel_size=3,
            stride=2,
            padding=3 // 2,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

    def build_bottom_up_layer(self, idx: int) -> nn.Module:
        """build bottom up layer.

        Args:
            idx (int): layer idx.
        Returns:
            nn.Module: The bottom up layer.
        """
        block_cfg = self.block_cfg.copy()

        return RepStageBlock(
            in_channels=int(self.out_channels[idx] * 2 * self.widen_factor),
            out_channels=int(self.out_channels[idx + 1] * self.widen_factor),
            num_blocks=make_round(self.num_csp_blocks, self.deepen_factor),
            block_cfg=block_cfg)

    def build_out_layer(self, *args, **kwargs) -> nn.Module:
        """build out layer."""
        return nn.Identity()

    def init_weights(self):
        if self.init_cfg is None:
            """Initialize the parameters."""
            for m in self.modules():
                if isinstance(m, torch.nn.Conv2d):
                    # In order to be consistent with the source code,
                    # reset the Conv2d initialization parameters
                    m.reset_parameters()
        else:
            super().init_weights()


@MODELS.register_module()
class YOLOv6CSPRepPAFPN(YOLOv6RepPAFPN):
    """Path Aggregation Network used in YOLOv6.

    Args:
        in_channels (List[int]): Number of input channels per scale.
        out_channels (int): Number of output channels (used at each scale)
        deepen_factor (float): Depth multiplier, multiply number of
            blocks in CSP layer by this amount. Defaults to 1.0.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Defaults to 1.0.
        num_csp_blocks (int): Number of bottlenecks in CSPLayer. Defaults to 1.
        freeze_all(bool): Whether to freeze the model.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to dict(type='BN', momentum=0.03, eps=0.001).
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='ReLU', inplace=True).
        block_cfg (dict): Config dict for the block used to build each
            layer. Defaults to dict(type='RepVGGBlock').
        block_act_cfg (dict): Config dict for activation layer used in each
            stage. Defaults to dict(type='SiLU', inplace=True).
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 in_channels: List[int],
                 out_channels: int,
                 deepen_factor: float = 1.0,
                 widen_factor: float = 1.0,
                 hidden_ratio: float = 0.5,
                 num_csp_blocks: int = 12,
                 freeze_all: bool = False,
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='ReLU', inplace=True),
                 block_act_cfg: ConfigType = dict(type='SiLU', inplace=True),
                 block_cfg: ConfigType = dict(type='RepVGGBlock'),
                 init_cfg: OptMultiConfig = None):
        self.hidden_ratio = hidden_ratio
        self.block_act_cfg = block_act_cfg
        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            deepen_factor=deepen_factor,
            widen_factor=widen_factor,
            num_csp_blocks=num_csp_blocks,
            freeze_all=freeze_all,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            block_cfg=block_cfg,
            init_cfg=init_cfg)

    def build_top_down_layer(self, idx: int) -> nn.Module:
        """build top down layer.

        Args:
            idx (int): layer idx.
        Returns:
            nn.Module: The top down layer.
        """
        block_cfg = self.block_cfg.copy()

        layer0 = BepC3StageBlock(
            in_channels=int(
                (self.out_channels[idx - 1] + self.in_channels[idx - 1]) *
                self.widen_factor),
            out_channels=int(self.out_channels[idx - 1] * self.widen_factor),
            num_blocks=make_round(self.num_csp_blocks, self.deepen_factor),
            block_cfg=block_cfg,
            hidden_ratio=self.hidden_ratio,
            norm_cfg=self.norm_cfg,
            act_cfg=self.block_act_cfg)

        if idx == 1:
            return layer0
        elif idx == 2:
            layer1 = ConvModule(
                in_channels=int(self.out_channels[idx - 1] *
                                self.widen_factor),
                out_channels=int(self.out_channels[idx - 2] *
                                 self.widen_factor),
                kernel_size=1,
                stride=1,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg)
            return nn.Sequential(layer0, layer1)

    def build_bottom_up_layer(self, idx: int) -> nn.Module:
        """build bottom up layer.

        Args:
            idx (int): layer idx.
        Returns:
            nn.Module: The bottom up layer.
        """
        block_cfg = self.block_cfg.copy()

        return BepC3StageBlock(
            in_channels=int(self.out_channels[idx] * 2 * self.widen_factor),
            out_channels=int(self.out_channels[idx + 1] * self.widen_factor),
            num_blocks=make_round(self.num_csp_blocks, self.deepen_factor),
            block_cfg=block_cfg,
            hidden_ratio=self.hidden_ratio,
            norm_cfg=self.norm_cfg,
            act_cfg=self.block_act_cfg)