Spaces:
Runtime error
Runtime error
File size: 7,242 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from functools import partial
from typing import List, Optional, Tuple
import torch
from mmdeploy.codebase.mmdet import get_post_processing_params
from mmdeploy.codebase.mmdet.models.layers import multiclass_nms
from mmdeploy.core import FUNCTION_REWRITER
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor
from mmyolo.deploy.models.layers import efficient_nms
from mmyolo.models.dense_heads import YOLOv5Head
def yolov5_bbox_decoder(priors: Tensor, bbox_preds: Tensor,
stride: int) -> Tensor:
"""Decode YOLOv5 bounding boxes.
Args:
priors (Tensor): Prior boxes in center-offset form.
bbox_preds (Tensor): Predicted bounding boxes.
stride (int): Stride of the feature map.
Returns:
Tensor: Decoded bounding boxes.
"""
bbox_preds = bbox_preds.sigmoid()
x_center = (priors[..., 0] + priors[..., 2]) * 0.5
y_center = (priors[..., 1] + priors[..., 3]) * 0.5
w = priors[..., 2] - priors[..., 0]
h = priors[..., 3] - priors[..., 1]
x_center_pred = (bbox_preds[..., 0] - 0.5) * 2 * stride + x_center
y_center_pred = (bbox_preds[..., 1] - 0.5) * 2 * stride + y_center
w_pred = (bbox_preds[..., 2] * 2)**2 * w
h_pred = (bbox_preds[..., 3] * 2)**2 * h
decoded_bboxes = torch.stack(
[x_center_pred, y_center_pred, w_pred, h_pred], dim=-1)
return decoded_bboxes
@FUNCTION_REWRITER.register_rewriter(
func_name='mmyolo.models.dense_heads.yolov5_head.'
'YOLOv5Head.predict_by_feat')
def yolov5_head__predict_by_feat(self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
objectnesses: Optional[List[Tensor]] = None,
batch_img_metas: Optional[List[dict]] = None,
cfg: Optional[ConfigDict] = None,
rescale: bool = False,
with_nms: bool = True) -> Tuple[InstanceData]:
"""Transform a batch of output features extracted by the head into
bbox results.
Args:
cls_scores (list[Tensor]): Classification scores for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * 4, H, W).
objectnesses (list[Tensor], Optional): Score factor for
all scale level, each is a 4D-tensor, has shape
(batch_size, 1, H, W).
batch_img_metas (list[dict], Optional): Batch image meta info.
Defaults to None.
cfg (ConfigDict, optional): Test / postprocessing
configuration, if None, test_cfg would be used.
Defaults to None.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
tuple[Tensor, Tensor]: The first item is an (N, num_box, 5) tensor,
where 5 represent (tl_x, tl_y, br_x, br_y, score), N is batch
size and the score between 0 and 1. The shape of the second
tensor in the tuple is (N, num_box), and each element
represents the class label of the corresponding box.
"""
ctx = FUNCTION_REWRITER.get_context()
detector_type = type(self)
deploy_cfg = ctx.cfg
use_efficientnms = deploy_cfg.get('use_efficientnms', False)
dtype = cls_scores[0].dtype
device = cls_scores[0].device
bbox_decoder = self.bbox_coder.decode
nms_func = multiclass_nms
if use_efficientnms:
if detector_type is YOLOv5Head:
nms_func = partial(efficient_nms, box_coding=0)
bbox_decoder = yolov5_bbox_decoder
else:
nms_func = efficient_nms
assert len(cls_scores) == len(bbox_preds)
cfg = self.test_cfg if cfg is None else cfg
cfg = copy.deepcopy(cfg)
num_imgs = cls_scores[0].shape[0]
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes, dtype=dtype, device=device)
flatten_priors = torch.cat(mlvl_priors)
mlvl_strides = [
flatten_priors.new_full(
(featmap_size[0] * featmap_size[1] * self.num_base_priors, ),
stride)
for featmap_size, stride in zip(featmap_sizes, self.featmap_strides)
]
flatten_stride = torch.cat(mlvl_strides)
# flatten cls_scores, bbox_preds and objectness
flatten_cls_scores = [
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, self.num_classes)
for cls_score in cls_scores
]
cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid()
flatten_bbox_preds = [
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
for bbox_pred in bbox_preds
]
flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
if objectnesses is not None:
flatten_objectness = [
objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1)
for objectness in objectnesses
]
flatten_objectness = torch.cat(flatten_objectness, dim=1).sigmoid()
cls_scores = cls_scores * (flatten_objectness.unsqueeze(-1))
scores = cls_scores
bboxes = bbox_decoder(flatten_priors[None], flatten_bbox_preds,
flatten_stride)
if not with_nms:
return bboxes, scores
post_params = get_post_processing_params(deploy_cfg)
max_output_boxes_per_class = post_params.max_output_boxes_per_class
iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold)
score_threshold = cfg.get('score_thr', post_params.score_threshold)
pre_top_k = post_params.pre_top_k
keep_top_k = cfg.get('max_per_img', post_params.keep_top_k)
return nms_func(bboxes, scores, max_output_boxes_per_class, iou_threshold,
score_threshold, pre_top_k, keep_top_k)
@FUNCTION_REWRITER.register_rewriter(
func_name='mmyolo.models.dense_heads.yolov5_head.'
'YOLOv5Head.predict',
backend='rknn')
def yolov5_head__predict__rknn(self, x: Tuple[Tensor], *args,
**kwargs) -> Tuple[Tensor, Tensor, Tensor]:
"""Perform forward propagation of the detection head and predict detection
results on the features of the upstream network.
Args:
x (tuple[Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
"""
outs = self(x)
return outs
@FUNCTION_REWRITER.register_rewriter(
func_name='mmyolo.models.dense_heads.yolov5_head.'
'YOLOv5HeadModule.forward',
backend='rknn')
def yolov5_head_module__forward__rknn(
self, x: Tensor, *args, **kwargs) -> Tuple[Tensor, Tensor, Tensor]:
"""Forward feature of a single scale level."""
out = []
for i, feat in enumerate(x):
out.append(self.convs_pred[i](feat))
return out
|