Spaces:
Runtime error
Runtime error
File size: 19,731 Bytes
1c3eb47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import os
from typing import Any
import einops
import mmengine
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from lightning.pytorch.utilities import grad_norm
from mmengine.structures import InstanceData
from mmpl.registry import MODELS
from mmseg.utils import SampleList
from ..builder import build_backbone, build_loss, build_neck, build_head
from .base_pler import BasePLer
from mmpl.structures import ClsDataSample
from .base import BaseClassifier
import lightning.pytorch as pl
import torch.nn.functional as F
@MODELS.register_module()
class SegPLer(BasePLer):
def __init__(self,
sam=None,
sam_checkpoint='',
points_per_side=None,
sam_prompt_generator=None,
only_img_encoder=False,
only_decoder=False,
global_prompt=None,
need_train_names=None,
head=None,
with_clip=False,
train_head=False,
threshold=0.5,
ignore_index=255,
train_cfg=None,
test_cfg=None,
*args, **kwargs):
super().__init__(*args, **kwargs)
self.save_hyperparameters()
self.need_train_names = need_train_names
self.ignore_index = ignore_index
self.threshold = threshold
self.only_img_encoder = only_img_encoder
self.only_decoder = only_decoder
self.global_prompt = global_prompt
self.train_head = train_head
if sam is not None:
if self.only_img_encoder:
self.sam = sam_model_registry[sam](sam_checkpoint).image_encoder
elif self.only_decoder:
self.prompt_encoder = sam_model_registry[sam](sam_checkpoint).prompt_encoder
self.mask_decoder = sam_model_registry[sam](sam_checkpoint).mask_decoder
else:
sam = sam_model_registry[sam](sam_checkpoint, train_head=train_head)
self.img_encoder = sam.image_encoder
self.prompt_encoder = sam.prompt_encoder
self.mask_decoder = sam.mask_decoder
self.prompt_encoder_no_mask_embed = sam.prompt_encoder.no_mask_embed
if points_per_side is not None:
self.point_grids = build_all_layer_point_grids(
points_per_side, 0, 1)
if sam_prompt_generator is not None:
self.sam_prompt_generator = MODELS.build(sam_prompt_generator)
if head is not None:
self.head = MODELS.build(head)
self.with_clip = with_clip
if global_prompt is not None:
if with_clip:
self.logits_prompt = nn.Sequential(
nn.Linear(1, 8),
nn.ReLU(),
nn.Linear(8, 16)
)
self.global_prompt = nn.Sequential(
nn.Conv2d(768+16, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(256, 1, kernel_size=3, padding=1),
)
else:
self.global_prompt = nn.Sequential(
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 1, kernel_size=3, padding=1),
)
def setup(self, stage: str) -> None:
if self.need_train_names is not None:
self._set_grad(self.need_train_names, noneed_train_names=[])
def configure_sharded_model(self) -> None:
if self.trainer.strategy.__class__.__name__ == 'FSDPStrategy':
from torch.distributed.fsdp.wrap import wrap
self.sam_prompt_generator = wrap(self.sam_prompt_generator)
self.img_encoder = wrap(self.img_encoder)
self.prompt_encoder_no_mask_embed = wrap(self.prompt_encoder_no_mask_embed)
self.mask_decoder = wrap(self.mask_decoder)
self.prompt_encoder = wrap(self.prompt_encoder)
from torch.distributed.fsdp import CPUOffload
# from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
# import functools
# strategy = dict(
# type='FSDPStrategy',
# cpu_offload=CPUOffload(offload_params=True),
# auto_wrap_policy=functools.partial(
# size_based_auto_wrap_policy, min_num_params=int(1e8)
# )
#
# )
else:
super().configure_sharded_model()
def configure_optimizers(self):
if self.trainer.strategy.__class__.__name__ == 'DeepSpeedStrategy':
import deepspeed
# optimizer = deepspeed.runtime.
optimizer = deepspeed.ops.adam.FusedAdam(self.sam_prompt_generator.parameters(), lr=1e-4)
# optimizer = deepspeed.ops.adam.DeepSpeedCPUAdam(self.sam_prompt_generator.parameters(), lr=1e-4)
# optimizer = torch.optim.Adam(self.sam_prompt_generator.parameters(), lr=1e-4)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)
return [optimizer], [lr_scheduler]
else:
return super().configure_optimizers()
def init_weights(self):
import ipdb; ipdb.set_trace()
pass
# def on_fit_start(self) -> None:
# if hasattr(self, 'train_evaluator'):
# self.train_evaluator = self.train_evaluator.to(self.device)
# if hasattr(self, 'val_evaluator'):
# self.val_evaluator = self.val_evaluator.to(self.device)
def train(self, mode=True):
if self.need_train_names is not None:
return self._set_train_module(mode, self.need_train_names)
else:
super().train(mode)
return self
def validation_step(self, batch, batch_idx):
seg_label = torch.stack([x.gt_sem_seg.data for x in batch['data_samples']], dim=0)
if self.only_img_encoder:
masks_pred = self.forward_only_img_encoder(batch)
masks_pred = F.interpolate(masks_pred, size=seg_label.shape[-2:], mode='bilinear',
align_corners=True)
seg_logits = masks_pred > 0
elif self.only_decoder:
cls_logits, masks, n_iou_preds = self.forward_sam_prompt_generator(batch) # 1x100x2, 1x100x1x256x256, 1x100x1
masks = masks.squeeze(2)
masks = F.interpolate(masks, size=seg_label.shape[-2:], mode='bilinear', align_corners=True)
# cls_logits[..., 1:2] = cls_logits[..., 1:2] * n_iou_preds
seg_logits = self.post_process(cls_logits.detach(), masks.detach())
seg_logits = seg_logits > self.threshold
else:
cls_logits, pred_masks, n_iou_preds = self.forward_sam_prompt_generator_all(
batch) # 1x100x2, 1x100x1x256x256, 1x100x1
pred_masks = pred_masks.squeeze(2)
pred_masks = F.interpolate(pred_masks, size=seg_label.shape[-2:], mode='bilinear', align_corners=True)
# cls_logits[..., 1:2] = cls_logits[..., 1:2] * n_iou_preds
seg_logits = self.post_process(cls_logits.detach(), pred_masks.detach())
seg_logits = seg_logits > self.threshold
# import ipdb; ipdb.set_trace()
self.val_evaluator.update(seg_logits, seg_label)
def test_step(self, batch, batch_idx, *args: Any, **kwargs: Any):
cls_logits, n_img_masks = self.forward(batch)
seg_label = torch.stack([x.gt_sem_seg.data for x in batch['data_samples']], dim=0)
seg_label = seg_label.squeeze(1)
masks = F.interpolate(n_img_masks, size=seg_label.shape[-2:], mode='bilinear', align_corners=True)
masks = masks.squeeze(1) > 0
self.evaluator.update(masks, seg_label)
def _seg_data_to_instance_data(self, batch_data_samples: SampleList):
"""Perform forward propagation to convert paradigm from MMSegmentation
to MMDetection to ensure ``MMDET_Mask2FormerHead`` could be called
normally. Specifically, ``batch_gt_instances`` would be added.
Args:
batch_data_samples (List[:obj:`SegDataSample`]): The Data
Samples. It usually includes information such as
`gt_sem_seg`.
Returns:
tuple[Tensor]: A tuple contains two lists.
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``labels``, each is
unique ground truth label id of images, with
shape (num_gt, ) and ``masks``, each is ground truth
masks of each instances of a image, shape (num_gt, h, w).
- batch_img_metas (list[dict]): List of image meta information.
"""
batch_img_metas = []
batch_gt_instances = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
gt_masks = data_sample.instances_data.long()
gt_labels = data_sample.instances_label.long()
instance_data = InstanceData(labels=gt_labels, masks=gt_masks)
batch_gt_instances.append(instance_data)
return batch_gt_instances, batch_img_metas
def training_step(self, batch, batch_idx):
if self.only_img_encoder:
masks_pred = self.forward_only_img_encoder(batch)
seg_label = torch.stack([x.gt_sem_seg.data for x in batch['data_samples']], dim=0)
masks_pred = F.interpolate(masks_pred, size=seg_label.shape[-2:], mode='bilinear', align_corners=True)
losses = self.head.loss(masks_pred, seg_label)
masks_pred_result = masks_pred > 0
self.train_evaluator.update(masks_pred_result.detach(), seg_label.detach())
elif self.only_decoder:
cls_logits, masks, n_iou_preds = self.forward_sam_prompt_generator(batch) # 1x100x2, 1x100x1x256x256, 1x100x1
masks = masks.squeeze(2)
seg_label = torch.stack([x.gt_sem_seg.data for x in batch['data_samples']], dim=0)
masks = F.interpolate(masks, size=seg_label.shape[-2:], mode='bilinear', align_corners=True)
# cls_logits[..., 1:2] = cls_logits[..., 1:2] * n_iou_preds
seg_logits = self.post_process(cls_logits.clone().detach(), masks.clone().detach())
seg_logits = seg_logits > self.threshold
self.train_evaluator.update(seg_logits, seg_label)
batch_gt_instances, batch_img_metas = self._seg_data_to_instance_data(
batch['data_samples'])
losses = self.head.loss(cls_logits, masks, batch_gt_instances, batch_img_metas)
else:
cls_logits, pred_masks, n_iou_preds = self.forward_sam_prompt_generator_all(
batch) # 1x100x2, 1x100x1x256x256, 1x100x1
pred_masks = pred_masks.squeeze(2)
if torch.isinf(pred_masks).any() or torch.isnan(pred_masks).any():
# import ipdb;
# ipdb.set_trace()
# raise ValueError('cost is nan in CrossEntropyLossCost')
print('!!!!!!!!!!!!!!!!!!!!loss is nan or inf!!!!!!!!!!!!!!!!!!')
return torch.tensor(0.0, requires_grad=True, device=self.device)
seg_label = torch.stack([x.gt_sem_seg.data for x in batch['data_samples']], dim=0)
pred_masks = F.interpolate(pred_masks, size=seg_label.shape[-2:], mode='bilinear', align_corners=True)
# cls_logits[..., 1:2] = cls_logits[..., 1:2] * n_iou_preds
seg_logits = self.post_process(cls_logits.clone().detach(), pred_masks.clone().detach())
seg_logits = seg_logits > self.threshold
self.train_evaluator.update(seg_logits, seg_label)
batch_gt_instances, batch_img_metas = self._seg_data_to_instance_data(
batch['data_samples'])
losses = self.head.loss(cls_logits, pred_masks, batch_gt_instances, batch_img_metas)
parsed_losses, log_vars = self.parse_losses(losses)
log_vars = {f'train_{k}': v for k, v in log_vars.items()}
log_vars['loss'] = parsed_losses
self.log_dict(log_vars, prog_bar=True)
return log_vars
def on_before_optimizer_step(self, optimizer) -> None:
self.log_grad(module=self.sam_prompt_generator)
def post_process(self, mask_cls_results, mask_pred_results):
cls_score = F.softmax(mask_cls_results, dim=-1)[..., 1:2]
mask_pred = mask_pred_results.sigmoid()
seg_logits = torch.einsum('bqc, bqhw->bchw', cls_score, mask_pred)
return seg_logits
def forward_only_img_encoder(self, batch, *args: Any, **kwargs: Any) -> Any:
if self.with_clip:
clip_dense_embs = torch.stack([x.clip_dense_embs for x in batch['data_samples']], dim=0)
logits_per_images = torch.stack([x.logits_per_image for x in batch['data_samples']], dim=0)
logits_per_images = self.logits_prompt(logits_per_images) # Bx576x16
clip_dense_embs = torch.cat([clip_dense_embs, logits_per_images], dim=-1)
clip_dense_embs = rearrange(clip_dense_embs, 'b (h w) c -> b c h w', h=int(clip_dense_embs.shape[1]**0.5))
masks_pred = self.global_prompt(clip_dense_embs)
else:
image_embeddings = torch.stack([x.image_embeddings for x in batch['data_samples']], dim=0)
masks_pred = self.global_prompt(image_embeddings)
return masks_pred
def forward_sam_prompt_generator(self, batch, *args: Any, **kwargs: Any) -> Any:
inner_states = [x.inner_states for x in batch['data_samples']]
image_embeddings = torch.stack([x.image_embeddings for x in batch['data_samples']], dim=0)
inner_states_tmp = []
for idx in range(len(inner_states[0])):
inner_states_tmp.append(torch.stack([x[idx] for x in inner_states], dim=0).to(image_embeddings.device))
point_embs, cls_logits = self.sam_prompt_generator(inner_states_tmp)
# if has points prompt, then get points embeddings
if hasattr(self, 'point_grids'):
points_scale = np.array(img.shape[-2:], dtype=np.float32).reshape(1, -1) # 2,
points_for_image = self.point_grids[0] * points_scale
in_points = torch.as_tensor(points_for_image, device=img.device)
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
in_points = rearrange(in_points, 'n c -> n () c')
in_labels = rearrange(in_labels, 'n -> n ()')
points = (in_points, in_labels)
sparse_embeddings, dense_embeddings = self.sam.prompt_encoder(
points=points,
boxes=None,
masks=None,
) # 1024x2x256; 1024x256x64x64
else:
# ponits_embeddings B T N C
sparse_embeddings = point_embs
dense_embeddings = self.prompt_encoder.no_mask_embed.weight.view(1, 1, -1, 1, 1).expand(
sparse_embeddings.shape[0], sparse_embeddings.shape[1], -1,
self.prompt_encoder.image_embedding_size[0], self.prompt_encoder.image_embedding_size[1]
)
n_img_masks = []
n_iou_preds = []
n_class_aware_probs = []
for curr_img_embedding, cur_s_emb, cur_d_emb in zip(image_embeddings, sparse_embeddings, dense_embeddings):
lr_masks, iou_pred, class_aware_prob = self.mask_decoder(
image_embeddings=curr_img_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=cur_s_emb,
dense_prompt_embeddings=cur_d_emb
)
mask_slice = slice(0, 1)
masks = lr_masks[:, mask_slice, :, :]
iou_pred = iou_pred[:, mask_slice]
class_aware_prob = class_aware_prob[:, mask_slice]
n_img_masks.append(masks)
n_iou_preds.append(iou_pred)
n_img_masks = torch.stack(n_img_masks, dim=0)
n_iou_preds = torch.stack(n_iou_preds, dim=0)
return cls_logits, n_img_masks, n_iou_preds
def forward_sam_prompt_generator_all(self, batch, *args: Any, **kwargs: Any) -> Any:
x = torch.stack(batch['inputs'], dim=0)
# if self.local_rank == 0:
# import pdb; pdb.set_trace()
# self.trainer.strategy.barrier()
x = x[:, [2, 1, 0], :, :] # BGR -> RGB
x = (x - self.img_encoder.pixel_mean) / self.img_encoder.pixel_std
with torch.no_grad():
image_embeddings, inner_states = self.img_encoder(x)
point_embs, cls_logits = self.sam_prompt_generator(inner_states)
# if has points prompt, then get points embeddings
if hasattr(self, 'point_grids'):
points_scale = np.array(img.shape[-2:], dtype=np.float32).reshape(1, -1) # 2,
points_for_image = self.point_grids[0] * points_scale
in_points = torch.as_tensor(points_for_image, device=img.device)
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
in_points = rearrange(in_points, 'n c -> n () c')
in_labels = rearrange(in_labels, 'n -> n ()')
points = (in_points, in_labels)
sparse_embeddings, dense_embeddings = self.sam.prompt_encoder(
points=points,
boxes=None,
masks=None,
) # 1024x2x256; 1024x256x64x64
else:
# ponits_embeddings B T N C
sparse_embeddings = point_embs
dense_embeddings = self.prompt_encoder_no_mask_embed(torch.tensor([0], device=self.device)).view(1, 1, -1, 1, 1).expand(
sparse_embeddings.shape[0], sparse_embeddings.shape[1], -1,
image_embeddings.shape[-2], image_embeddings.shape[-1]
)
n_img_masks = []
n_iou_preds = []
n_class_aware_probs = []
for curr_img_embedding, cur_s_emb, cur_d_emb in zip(image_embeddings, sparse_embeddings, dense_embeddings):
lr_masks, iou_pred, class_aware_prob = self.mask_decoder(
image_embeddings=curr_img_embedding.unsqueeze(0),
image_pe=self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=cur_s_emb,
dense_prompt_embeddings=cur_d_emb
)
if self.train_head:
masks = lr_masks
iou_pred = iou_pred
else:
mask_slice = slice(0, 1)
masks = lr_masks[:, mask_slice, :, :]
iou_pred = iou_pred[:, mask_slice]
n_img_masks.append(masks)
n_iou_preds.append(iou_pred)
n_img_masks = torch.stack(n_img_masks, dim=0)
n_iou_preds = torch.stack(n_iou_preds, dim=0)
return cls_logits, n_img_masks, n_iou_preds
def vis_inter_states(self, batch, masks, *args: Any, **kwargs: Any):
folder = 'results/tmp'
import cv2
cv2.imwrite(os.path.join(folder, f'img.png'), batch['inputs'][0].permute((1, 2, 0)).detach().cpu().numpy())
cv2.imwrite(os.path.join(folder, f'label_mask.png'), seg_label[0][0].detach().cpu().numpy() * 255)
masks = masks > 0
for idx, mask_pred in enumerate(masks[0]):
cv2.imwrite(os.path.join(folder, f'pred_mask_{idx}.png'), mask_pred[0].detach().cpu().numpy() * 255)
import ipdb; ipdb.set_trace()
|