|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from torch.nn.utils import weight_norm |
|
|
|
class ScaleAwareAttention2d(nn.Module): |
|
def __init__(self, in_channels, ratios, K, temperature, init_weight=True): |
|
super().__init__() |
|
assert temperature % 3 == 1 |
|
self.avgpool = nn.AdaptiveAvgPool2d(1) |
|
if in_channels != 3: |
|
hidden_channels = int(in_channels * ratios) + 1 |
|
else: |
|
hidden_channels = K |
|
self.fc1 = nn.Conv2d(in_channels, hidden_channels, 1, bias=False) |
|
|
|
self.fc2 = nn.Conv2d(hidden_channels + 2, K, 1, bias=True) |
|
self.temperature = temperature |
|
if init_weight: |
|
self._initialize_weights() |
|
|
|
def _initialize_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
if isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def updata_temperature(self): |
|
if self.temperature != 1: |
|
self.temperature -= 3 |
|
|
|
|
|
def forward(self, x, scale): |
|
if not self.training: |
|
temperature = 1 |
|
else: |
|
temperature = self.temperature |
|
|
|
batch_size = x.shape[0] |
|
x = self.avgpool(x) |
|
x = self.fc1(x) |
|
x = F.relu(x) |
|
x = torch.cat( |
|
[x, torch.ones([batch_size, 2, 1, 1], device=x.device) * scale], dim=1 |
|
) |
|
x = self.fc2(x).view(x.size(0), -1) |
|
return F.softmax(x / temperature, 1) |
|
|
|
|
|
class ScaleAwareDynamicConv2d(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
ratio=0.25, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
bias=True, |
|
K=4, |
|
temperature=34, |
|
init_weight=True, |
|
): |
|
super().__init__() |
|
assert in_channels % groups == 0 |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.stride = stride |
|
self.padding = padding |
|
self.dilation = dilation |
|
self.groups = groups |
|
self.bias = bias |
|
self.K = K |
|
self.attention = ScaleAwareAttention2d(in_channels, ratio, K, temperature) |
|
|
|
self.weight = nn.Parameter( |
|
torch.randn( |
|
K, out_channels, in_channels // groups, kernel_size, kernel_size |
|
), |
|
requires_grad=True, |
|
) |
|
if bias: |
|
self.bias = nn.Parameter(torch.Tensor(K, out_channels)) |
|
else: |
|
self.bias = None |
|
if init_weight: |
|
self._initialize_weights() |
|
|
|
def _initialize_weights(self): |
|
for i in range(self.K): |
|
nn.init.kaiming_uniform_(self.weight[i]) |
|
|
|
def update_temperature(self): |
|
self.attention.updata_temperature() |
|
|
|
def forward(self, x, scale): |
|
softmax_attention = self.attention(x, scale) |
|
batch_size, _, height, width = x.size() |
|
x = x.view(1, -1, height, width) |
|
weight = self.weight.view(self.K, -1) |
|
|
|
aggregate_weight = torch.mm(softmax_attention, weight).view( |
|
-1, self.in_channels, self.kernel_size, self.kernel_size |
|
) |
|
if self.bias is not None: |
|
aggregate_bias = torch.mm(softmax_attention, self.bias).view(-1) |
|
else: |
|
aggregate_bias = None |
|
output = F.conv2d( |
|
x, |
|
weight=aggregate_weight, |
|
bias=aggregate_bias, |
|
stride=self.stride, |
|
padding=self.padding, |
|
dilation=self.dilation, |
|
groups=self.groups * batch_size, |
|
) |
|
output = output.view( |
|
batch_size, self.out_channels, output.size(-2), output.size(-1) |
|
) |
|
return output |
|
|