File size: 7,073 Bytes
02c5426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import math
from argparse import Namespace

import torch
import torch.nn as nn

from models import register


def default_conv(in_channels, out_channels, kernel_size, bias=True):
    return nn.Conv2d(
        in_channels, out_channels, kernel_size,
        padding=(kernel_size//2), bias=bias)

class MeanShift(nn.Conv2d):
    def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1):
        super(MeanShift, self).__init__(3, 3, kernel_size=1)
        std = torch.Tensor(rgb_std)
        self.weight.data = torch.eye(3).view(3, 3, 1, 1)
        self.weight.data.div_(std.view(3, 1, 1, 1))
        self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
        self.bias.data.div_(std)
        self.requires_grad = False

class Upsampler(nn.Sequential):
    def __init__(self, conv, scale, n_feat, bn=False, act=False, bias=True):

        m = []
        if (scale & (scale - 1)) == 0:    # Is scale = 2^n?
            for _ in range(int(math.log(scale, 2))):
                m.append(conv(n_feat, 4 * n_feat, 3, bias))
                m.append(nn.PixelShuffle(2))
                if bn: m.append(nn.BatchNorm2d(n_feat))
                if act: m.append(act())
        elif scale == 3:
            m.append(conv(n_feat, 9 * n_feat, 3, bias))
            m.append(nn.PixelShuffle(3))
            if bn: m.append(nn.BatchNorm2d(n_feat))
            if act: m.append(act())
        else:
            raise NotImplementedError

        super(Upsampler, self).__init__(*m)

## Channel Attention (CA) Layer
class CALayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(CALayer, self).__init__()
        # global average pooling: feature --> point
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        # feature channel downscale and upscale --> channel weight
        self.conv_du = nn.Sequential(
                nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),
                nn.ReLU(inplace=True),
                nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),
                nn.Sigmoid()
        )

    def forward(self, x):
        y = self.avg_pool(x)
        y = self.conv_du(y)
        return x * y

## Residual Channel Attention Block (RCAB)
class RCAB(nn.Module):
    def __init__(
        self, conv, n_feat, kernel_size, reduction,
        bias=True, bn=False, act=nn.ReLU(True), res_scale=1):

        super(RCAB, self).__init__()
        modules_body = []
        for i in range(2):
            modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias))
            if bn: modules_body.append(nn.BatchNorm2d(n_feat))
            if i == 0: modules_body.append(act)
        modules_body.append(CALayer(n_feat, reduction))
        self.body = nn.Sequential(*modules_body)
        self.res_scale = res_scale

    def forward(self, x):
        res = self.body(x)
        #res = self.body(x).mul(self.res_scale)
        res += x
        return res

## Residual Group (RG)
class ResidualGroup(nn.Module):
    def __init__(self, conv, n_feat, kernel_size, reduction, act, res_scale, n_resblocks):
        super(ResidualGroup, self).__init__()
        modules_body = []
        modules_body = [
            RCAB(
                conv, n_feat, kernel_size, reduction, bias=True, bn=False, act=nn.ReLU(True), res_scale=1) \
            for _ in range(n_resblocks)]
        modules_body.append(conv(n_feat, n_feat, kernel_size))
        self.body = nn.Sequential(*modules_body)

    def forward(self, x):
        res = self.body(x)
        res += x
        return res

## Residual Channel Attention Network (RCAN)
class RCAN(nn.Module):
    def __init__(self, args, conv=default_conv):
        super(RCAN, self).__init__()
        self.args = args

        n_resgroups = args.n_resgroups
        n_resblocks = args.n_resblocks
        n_feats = args.n_feats
        kernel_size = 3
        reduction = args.reduction
        scale = args.scale[0]
        act = nn.ReLU(True)

        # RGB mean for DIV2K
        rgb_mean = (0.4488, 0.4371, 0.4040)
        rgb_std = (1.0, 1.0, 1.0)
        self.sub_mean = MeanShift(args.rgb_range, rgb_mean, rgb_std)

        # define head module
        modules_head = [conv(args.n_colors, n_feats, kernel_size)]

        # define body module
        modules_body = [
            ResidualGroup(
                conv, n_feats, kernel_size, reduction, act=act, res_scale=args.res_scale, n_resblocks=n_resblocks) \
            for _ in range(n_resgroups)]

        modules_body.append(conv(n_feats, n_feats, kernel_size))

        self.add_mean = MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)

        self.head = nn.Sequential(*modules_head)
        self.body = nn.Sequential(*modules_body)

        if args.no_upsampling:
            self.out_dim = n_feats
        else:
            self.out_dim = args.n_colors
            # define tail module
            modules_tail = [
                Upsampler(conv, scale, n_feats, act=False),
                conv(n_feats, args.n_colors, kernel_size)]
            self.tail = nn.Sequential(*modules_tail)

    def forward(self, x):
        #x = self.sub_mean(x)
        x = self.head(x)

        res = self.body(x)
        res += x

        if self.args.no_upsampling:
            x = res
        else:
            x = self.tail(res)
        #x = self.add_mean(x)
        return x

    def load_state_dict(self, state_dict, strict=False):
        own_state = self.state_dict()
        for name, param in state_dict.items():
            if name in own_state:
                if isinstance(param, nn.Parameter):
                    param = param.data
                try:
                    own_state[name].copy_(param)
                except Exception:
                    if name.find('tail') >= 0:
                        print('Replace pre-trained upsampler to new one...')
                    else:
                        raise RuntimeError('While copying the parameter named {}, '
                                           'whose dimensions in the model are {} and '
                                           'whose dimensions in the checkpoint are {}.'
                                           .format(name, own_state[name].size(), param.size()))
            elif strict:
                if name.find('tail') == -1:
                    raise KeyError('unexpected key "{}" in state_dict'
                                   .format(name))

        if strict:
            missing = set(own_state.keys()) - set(state_dict.keys())
            if len(missing) > 0:
                raise KeyError('missing keys in state_dict: "{}"'.format(missing))


@register('rcan')
def make_rcan(n_resgroups=10, n_resblocks=20, n_feats=64, reduction=16,
              scale=2, no_upsampling=False, rgb_range=1):
    args = Namespace()
    args.n_resgroups = n_resgroups
    args.n_resblocks = n_resblocks
    args.n_feats = n_feats
    args.reduction = reduction

    args.scale = [scale]
    args.no_upsampling = no_upsampling

    args.rgb_range = rgb_range
    args.res_scale = 1
    args.n_colors = 3
    return RCAN(args)