File size: 4,753 Bytes
02c5426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from torch.autograd import Variable

def default_conv(in_channels, out_channels, kernel_size, bias=True):
    return nn.Conv2d(
        in_channels, out_channels, kernel_size,
        padding=(kernel_size//2), bias=bias)

class MeanShift(nn.Conv2d):
    def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1):
        super(MeanShift, self).__init__(3, 3, kernel_size=1)
        std = torch.Tensor(rgb_std)
        self.weight.data = torch.eye(3).view(3, 3, 1, 1)
        self.weight.data.div_(std.view(3, 1, 1, 1))
        self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
        self.bias.data.div_(std)
        self.requires_grad = False

class BasicBlock(nn.Sequential):
    def __init__(
        self, conv, in_channels, out_channels, kernel_size, stride=1, bias=True,
        bn=False, act=nn.ReLU(True)):

        m = [conv(in_channels, out_channels, kernel_size, bias=bias)]
        if bn:
            m.append(nn.BatchNorm2d(out_channels))
        if act is not None: 
            m.append(act)
        super(BasicBlock, self).__init__(*m)

class ResBlock(nn.Module):
    def __init__(
        self, conv, n_feat, kernel_size,
        bias=True, bn=False, act=nn.ReLU(True), res_scale=1):

        super(ResBlock, self).__init__()
        m = []
        for i in range(2):
            m.append(conv(n_feat, n_feat, kernel_size, bias=bias))
            if bn: m.append(nn.BatchNorm2d(n_feat))
            if i == 0: m.append(act)

        self.body = nn.Sequential(*m)
        self.res_scale = res_scale

    def forward(self, x):
        res = self.body(x).mul(self.res_scale)
        res += x

        return res


class Upsampler(nn.Sequential):
    def __init__(self, conv, scale, n_feat, bn=False, act=False, bias=True):

        m = []
        if (scale & (scale - 1)) == 0:    # Is scale = 2^n?
            for _ in range(int(math.log(scale, 2))):
                m.append(conv(n_feat, 4 * n_feat, 3, bias))
                m.append(nn.PixelShuffle(2))
                if bn: m.append(nn.BatchNorm2d(n_feat))
                if act: m.append(act())
        elif scale == 3:
            m.append(conv(n_feat, 9 * n_feat, 3, bias))
            m.append(nn.PixelShuffle(3))
            if bn: m.append(nn.BatchNorm2d(n_feat))
            if act: m.append(act())
        else:
            raise NotImplementedError

        super(Upsampler, self).__init__(*m)


class DownBlock(nn.Module):
    def __init__(self, scale):
        super().__init__()

        self.scale = scale

    def forward(self, x):
        n, c, h, w = x.size()
        x = x.view(n, c, h//self.scale, self.scale, w//self.scale, self.scale)
        x = x.permute(0, 3, 5, 1, 2, 4).contiguous()
        x = x.view(n, c * (self.scale**2), h//self.scale, w//self.scale)
        return x

# NONLocalBlock2D
# ref: https://github.com/AlexHex7/Non-local_pytorch/blob/master/Non-Local_pytorch_0.4.1_to_1.1.0/lib/non_local_dot_product.py
# ref: https://github.com/yulunzhang/RNAN/blob/master/SR/code/model/common.py
class NonLocalBlock2D(nn.Module):
    def __init__(self, in_channels, inter_channels):
        super(NonLocalBlock2D, self).__init__()

        self.in_channels = in_channels
        self.inter_channels = inter_channels

        self.g = nn.Conv2d(in_channels=in_channels, out_channels=inter_channels,
                           kernel_size=1, stride=1, padding=0)
        self.W = nn.Conv2d(in_channels=inter_channels, out_channels=in_channels,
                           kernel_size=1, stride=1, padding=0)
        nn.init.constant_(self.W.weight, 0)
        nn.init.constant_(self.W.bias, 0)

        self.theta = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels,
                             kernel_size=1, stride=1, padding=0)
        self.phi = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels,
                           kernel_size=1, stride=1, padding=0)

    def forward(self, x):

        batch_size = x.size(0)

        g_x = self.g(x).view(batch_size, self.inter_channels, -1)
        g_x = g_x.permute(0, 2, 1)

        theta_x = self.theta(x).view(batch_size, self.inter_channels, -1)
        theta_x = theta_x.permute(0, 2, 1)

        phi_x = self.phi(x).view(batch_size, self.inter_channels, -1)
        f = torch.matmul(theta_x, phi_x)

        # use dot production
        # N = f.size(-1)
        # f_div_C = f / N

        # use embedding gaussian
        f_div_C = F.softmax(f, dim=-1)

        y = torch.matmul(f_div_C, g_x)
        y = y.permute(0, 2, 1).contiguous()
        y = y.view(batch_size, self.inter_channels, *x.size()[2:])
        W_y = self.W(y)
        z = W_y + x

        return z