File size: 7,018 Bytes
02c5426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torch.nn as nn
import torch.nn.functional as F
import models
from models import register


@register('diinn')
class DIINN(nn.Module):
    def __init__(self,
                 encoder_spec,
                 mode=3, init_q=False):
        super().__init__()

        self.encoder = models.make(encoder_spec)
        self.decoder = ImplicitDecoder(mode=mode, init_q=init_q)

    def forward(self, x, size, bsize=None):
        x = self.encoder(x)
        x = self.decoder(x, size, bsize)
        return x


class SineAct(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return torch.sin(x)


def patch_norm_2d(x, kernel_size=3):
    # B, C, H, W = x.shape
    # var, mean = torch.var_mean(F.unfold(x, kernel_size=kernel_size, padding=padding).view(B, C,kernel_size**2, H, W), dim=2, keepdim=False)
    # return (x - mean) / torch.sqrt(var + 1e-6)
    mean = F.avg_pool2d(x, kernel_size=kernel_size, padding=kernel_size // 2)
    mean_sq = F.avg_pool2d(x ** 2, kernel_size=kernel_size, padding=kernel_size // 2)
    var = mean_sq - mean ** 2
    return (x - mean) / (var + 1e-6)


class ImplicitDecoder(nn.Module):
    def __init__(self, in_channels=64, hidden_dims=[256, 256, 256, 256], mode=3, init_q=False):
        super().__init__()

        self.mode = mode
        self.init_q = init_q

        last_dim_K = in_channels * 9

        if self.init_q:
            self.first_layer = nn.Sequential(nn.Conv2d(3, in_channels * 9, 1),
                                             SineAct())
            last_dim_Q = in_channels * 9
        else:
            last_dim_Q = 3

        self.K = nn.ModuleList()
        self.Q = nn.ModuleList()
        if self.mode == 1:
            for hidden_dim in hidden_dims:
                self.K.append(nn.Sequential(nn.Conv2d(last_dim_K, hidden_dim, 1),
                                            nn.ReLU()))
                self.Q.append(nn.Sequential(nn.Conv2d(last_dim_Q, hidden_dim, 1),
                                            SineAct()))
                last_dim_K = hidden_dim
                last_dim_Q = hidden_dim
        elif self.mode == 2:
            for hidden_dim in hidden_dims:
                self.K.append(nn.Sequential(nn.Conv2d(last_dim_K, hidden_dim, 1),
                                            nn.ReLU()))
                self.Q.append(nn.Sequential(nn.Conv2d(last_dim_Q, hidden_dim, 1),
                                            SineAct()))
                last_dim_K = hidden_dim + in_channels * 9
                last_dim_Q = hidden_dim
        elif self.mode == 3:
            for hidden_dim in hidden_dims:
                self.K.append(nn.Sequential(nn.Conv2d(last_dim_K, hidden_dim, 1),
                                            nn.ReLU()))
                self.Q.append(nn.Sequential(nn.Conv2d(last_dim_Q, hidden_dim, 1),
                                            SineAct()))
                last_dim_K = hidden_dim + in_channels * 9
                last_dim_Q = hidden_dim
        elif self.mode == 4:
            for hidden_dim in hidden_dims:
                self.K.append(nn.Sequential(nn.Conv2d(last_dim_K, hidden_dim, 1),
                                            nn.ReLU()))
                self.Q.append(nn.Sequential(nn.Conv2d(last_dim_Q, hidden_dim, 1),
                                            SineAct()))
                last_dim_K = hidden_dim + in_channels * 9
                last_dim_Q = hidden_dim
        if self.mode == 4:
            self.last_layer = nn.Conv2d(hidden_dims[-1], 3, 3, padding=1, padding_mode='reflect')
        else:
            self.last_layer = nn.Conv2d(hidden_dims[-1], 3, 1)

    def _make_pos_encoding(self, x, size):
        B, C, H, W = x.shape
        H_up, W_up = size

        h_idx = -1 + 1 / H + 2 / H * torch.arange(H, device=x.device).float()
        w_idx = -1 + 1 / W + 2 / W * torch.arange(W, device=x.device).float()
        in_grid = torch.stack(torch.meshgrid(h_idx, w_idx, indexing='ij'), dim=0)

        h_idx_up = -1 + 1 / H_up + 2 / H_up * torch.arange(H_up, device=x.device).float()
        w_idx_up = -1 + 1 / W_up + 2 / W_up * torch.arange(W_up, device=x.device).float()
        up_grid = torch.stack(torch.meshgrid(h_idx_up, w_idx_up, indexing='ij'), dim=0)

        rel_grid = (up_grid - F.interpolate(in_grid.unsqueeze(0), size=(H_up, W_up),
                                            mode='nearest-exact'))  # important! mode='nearest' gives inconsistent results
        rel_grid[:, 0, :, :] *= H
        rel_grid[:, 1, :, :] *= W

        return rel_grid.contiguous().detach()

    def step(self, x, syn_inp):
        if self.init_q:
            syn_inp = self.first_layer(syn_inp)
            x = syn_inp * x
        if self.mode == 1:
            k = self.K[0](x)
            q = k * self.Q[0](syn_inp)

            for i in range(1, len(self.K)):
                k = self.K[i](k)
                q = k * self.Q[i](q)

            q = self.last_layer(q)
            return q
        elif self.mode == 2:
            k = self.K[0](x)
            q = k * self.Q[0](syn_inp)
            for i in range(1, len(self.K)):
                k = self.K[i](torch.cat([k, x], dim=1))
                q = k * self.Q[i](q)
            q = self.last_layer(q)
            return q
        elif self.mode == 3:
            k = self.K[0](x)
            q = k * self.Q[0](syn_inp)
            # q = k + self.Q[0](syn_inp)
            for i in range(1, len(self.K)):
                k = self.K[i](torch.cat([q, x], dim=1))
                q = k * self.Q[i](q)
                # q = k + self.Q[i](q)
            q = self.last_layer(q)
            return q
        elif self.mode == 4:
            k = self.K[0](x)
            q = k * self.Q[0](syn_inp)
            for i in range(1, len(self.K)):
                k = self.K[i](torch.cat([q, x], dim=1))
                q = k * self.Q[i](q)
            q = self.last_layer(q)
            return q

    def batched_step(self, x, syn_inp, bsize):
        with torch.no_grad():
            h, w = syn_inp.shape[-2:]
            ql = 0
            preds = []
            while ql < w:
                qr = min(ql + bsize // h, w)
                pred = self.step(x[:, :, :, ql: qr], syn_inp[:, :, :, ql: qr])
                preds.append(pred)
                ql = qr
            pred = torch.cat(preds, dim=-1)
        return pred

    def forward(self, x, size, bsize=None):
        B, C, H_in, W_in = x.shape
        rel_coord = self._make_pos_encoding(x, size).expand(B, -1, *size)  # 2
        ratio = x.new_tensor([(H_in * W_in) / (size[0] * size[1])]).view(1, -1, 1, 1).expand(B, -1, *size)  # 2
        syn_inp = torch.cat([rel_coord, ratio], dim=1)
        x = F.interpolate(F.unfold(x, 3, padding=1).view(B, C * 9, H_in, W_in), size=syn_inp.shape[-2:],
                          mode='nearest-exact')
        if bsize is None:
            pred = self.step(x, syn_inp)
        else:
            pred = self.batched_step(x, syn_inp, bsize)
        return pred