File size: 12,028 Bytes
02c5426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import torch.nn as nn
import torch
import numpy as np
import torch.nn.functional as F
import math
import models
from models import register


def default_conv(in_channels, out_channels, kernel_size, bias=True):
    return nn.Conv2d(in_channels, out_channels, kernel_size, padding=(kernel_size//2), bias=bias)


## Channel Attention (CA) Layer
class CALayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(CALayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv_du = nn.Sequential(
            nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=True),
            nn.Sigmoid()
        )

    def forward(self, x):
        y = self.avg_pool(x)
        y = self.conv_du(y)
        return x * y


## Residual Channel Attention Block (RCAB)
class RCAB(nn.Module):
    def __init__(
            self, conv, n_feat, kernel_size, reduction,
            bias=True, bn=False, act=nn.ReLU(True), res_scale=1):

        super(RCAB, self).__init__()
        modules_body = []
        for i in range(2):
            modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias))
            if bn: modules_body.append(nn.BatchNorm2d(n_feat))
            if i == 0: modules_body.append(act)
        modules_body.append(CALayer(n_feat, reduction))
        self.body = nn.Sequential(*modules_body)
        self.res_scale = res_scale

    def forward(self, x):
        res = self.body(x)
        res += x
        return res


## Residual Group (RG)
class ResidualGroup(nn.Module):
    def __init__(self, conv, n_feat, kernel_size, reduction, act, res_scale, n_resblocks):
        super(ResidualGroup, self).__init__()
        modules_body = [
            RCAB(
                conv, n_feat, kernel_size, reduction, bias=True, bn=False, act=nn.ReLU(True), res_scale=1) \
            for _ in range(n_resblocks)]
        modules_body.append(conv(n_feat, n_feat, kernel_size))
        self.body = nn.Sequential(*modules_body)

    def forward(self, x):
        res = self.body(x)
        res += x
        return res


class SA_upsample(nn.Module):
    def __init__(self, channels, num_experts=4, bias=False):
        super(SA_upsample, self).__init__()
        self.bias = bias
        self.num_experts = num_experts
        self.channels = channels

        # experts
        weight_compress = []
        for i in range(num_experts):
            weight_compress.append(nn.Parameter(torch.Tensor(channels//8, channels, 1, 1)))
            nn.init.kaiming_uniform_(weight_compress[i], a=math.sqrt(5))
        self.weight_compress = nn.Parameter(torch.stack(weight_compress, 0))

        weight_expand = []
        for i in range(num_experts):
            weight_expand.append(nn.Parameter(torch.Tensor(channels, channels//8, 1, 1)))
            nn.init.kaiming_uniform_(weight_expand[i], a=math.sqrt(5))
        self.weight_expand = nn.Parameter(torch.stack(weight_expand, 0))

        # two FC layers
        self.body = nn.Sequential(
            nn.Conv2d(4, 64, 1, 1, 0, bias=True),
            nn.ReLU(True),
            nn.Conv2d(64, 64, 1, 1, 0, bias=True),
            nn.ReLU(True),
        )
        # routing head
        self.routing = nn.Sequential(
            nn.Conv2d(64, num_experts, 1, 1, 0, bias=True),
            nn.Sigmoid()
        )
        # offset head
        self.offset = nn.Conv2d(64, 2, 1, 1, 0, bias=True)

    def forward(self, x, scale, scale2):
        b, c, h, w = x.size()

        # (1) coordinates in LR space
        ## coordinates in HR space
        coor_hr = [torch.arange(0, round(h * scale), 1).unsqueeze(0).float().to(x.device),
                   torch.arange(0, round(w * scale2), 1).unsqueeze(0).float().to(x.device)]

        ## coordinates in LR space
        coor_h = ((coor_hr[0] + 0.5) / scale) - (torch.floor((coor_hr[0] + 0.5) / scale + 1e-3)) - 0.5
        coor_h = coor_h.permute(1, 0)
        coor_w = ((coor_hr[1] + 0.5) / scale2) - (torch.floor((coor_hr[1] + 0.5) / scale2 + 1e-3)) - 0.5

        input = torch.cat((
            torch.ones_like(coor_h).expand([-1, round(scale2 * w)]).unsqueeze(0) / scale2,
            torch.ones_like(coor_h).expand([-1, round(scale2 * w)]).unsqueeze(0) / scale,
            coor_h.expand([-1, round(scale2 * w)]).unsqueeze(0),
            coor_w.expand([round(scale * h), -1]).unsqueeze(0)
        ), 0).unsqueeze(0)


        # (2) predict filters and offsets
        embedding = self.body(input)
        ## offsets
        offset = self.offset(embedding)

        ## filters
        routing_weights = self.routing(embedding)
        routing_weights = routing_weights.view(self.num_experts, round(scale*h) * round(scale2*w)).transpose(0, 1)      # (h*w) * n

        weight_compress = self.weight_compress.view(self.num_experts, -1)
        weight_compress = torch.matmul(routing_weights, weight_compress)
        weight_compress = weight_compress.view(1, round(scale*h), round(scale2*w), self.channels//8, self.channels)

        weight_expand = self.weight_expand.view(self.num_experts, -1)
        weight_expand = torch.matmul(routing_weights, weight_expand)
        weight_expand = weight_expand.view(1, round(scale*h), round(scale2*w), self.channels, self.channels//8)

        # (3) grid sample & spatially varying filtering
        ## grid sample
        fea0 = grid_sample(x, offset, scale, scale2)               ## b * h * w * c * 1
        fea = fea0.unsqueeze(-1).permute(0, 2, 3, 1, 4)            ## b * h * w * c * 1

        ## spatially varying filtering
        out = torch.matmul(weight_compress.expand([b, -1, -1, -1, -1]), fea)
        out = torch.matmul(weight_expand.expand([b, -1, -1, -1, -1]), out).squeeze(-1)

        return out.permute(0, 3, 1, 2) + fea0


class SA_adapt(nn.Module):
    def __init__(self, channels):
        super(SA_adapt, self).__init__()
        self.mask = nn.Sequential(
            nn.Conv2d(channels, 16, 3, 1, 1),
            nn.BatchNorm2d(16),
            nn.ReLU(True),
            nn.AvgPool2d(2),
            nn.Conv2d(16, 16, 3, 1, 1),
            nn.BatchNorm2d(16),
            nn.ReLU(True),
            nn.Conv2d(16, 16, 3, 1, 1),
            nn.BatchNorm2d(16),
            nn.ReLU(True),
            nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
            nn.Conv2d(16, 1, 3, 1, 1),
            nn.BatchNorm2d(1),
            nn.Sigmoid()
        )
        self.adapt = SA_conv(channels, channels, 3, 1, 1)

    def forward(self, x, scale, scale2):
        mask = self.mask(x)
        adapted = self.adapt(x, scale, scale2)

        return x + adapted * mask


class SA_conv(nn.Module):
    def __init__(self, channels_in, channels_out, kernel_size=3, stride=1, padding=1, bias=False, num_experts=4):
        super(SA_conv, self).__init__()
        self.channels_out = channels_out
        self.channels_in = channels_in
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.num_experts = num_experts
        self.bias = bias

        # FC layers to generate routing weights
        self.routing = nn.Sequential(
            nn.Linear(2, 64),
            nn.ReLU(True),
            nn.Linear(64, num_experts),
            nn.Softmax(1)
        )

        # initialize experts
        weight_pool = []
        for i in range(num_experts):
            weight_pool.append(nn.Parameter(torch.Tensor(channels_out, channels_in, kernel_size, kernel_size)))
            nn.init.kaiming_uniform_(weight_pool[i], a=math.sqrt(5))
        self.weight_pool = nn.Parameter(torch.stack(weight_pool, 0))

        if bias:
            self.bias_pool = nn.Parameter(torch.Tensor(num_experts, channels_out))
            fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_pool)
            bound = 1 / math.sqrt(fan_in)
            nn.init.uniform_(self.bias_pool, -bound, bound)

    def forward(self, x, scale, scale2):
        # generate routing weights
        scale = torch.ones(1, 1).to(x.device) / scale
        scale2 = torch.ones(1, 1).to(x.device) / scale2
        routing_weights = self.routing(torch.cat((scale, scale2), 1)).view(self.num_experts, 1, 1)

        # fuse experts
        fused_weight = (self.weight_pool.view(self.num_experts, -1, 1) * routing_weights).sum(0)
        fused_weight = fused_weight.view(-1, self.channels_in, self.kernel_size, self.kernel_size)

        if self.bias:
            fused_bias = torch.mm(routing_weights, self.bias_pool).view(-1)
        else:
            fused_bias = None

        # convolution
        out = F.conv2d(x, fused_weight, fused_bias, stride=self.stride, padding=self.padding)

        return out


def grid_sample(x, offset, scale, scale2):
    # generate grids
    b, _, h, w = x.size()
    grid = np.meshgrid(range(round(scale2*w)), range(round(scale*h)))
    grid = np.stack(grid, axis=-1).astype(np.float64)
    grid = torch.Tensor(grid).to(x.device)

    # project into LR space
    grid[:, :, 0] = (grid[:, :, 0] + 0.5) / scale2 - 0.5
    grid[:, :, 1] = (grid[:, :, 1] + 0.5) / scale - 0.5

    # normalize to [-1, 1]
    grid[:, :, 0] = grid[:, :, 0] * 2 / (w - 1) -1
    grid[:, :, 1] = grid[:, :, 1] * 2 / (h - 1) -1
    grid = grid.permute(2, 0, 1).unsqueeze(0)
    grid = grid.expand([b, -1, -1, -1])

    # add offsets
    offset_0 = torch.unsqueeze(offset[:, 0, :, :] * 2 / (w - 1), dim=1)
    offset_1 = torch.unsqueeze(offset[:, 1, :, :] * 2 / (h - 1), dim=1)
    grid = grid + torch.cat((offset_0, offset_1),1)
    grid = grid.permute(0, 2, 3, 1)

    # sampling
    output = F.grid_sample(x, grid, padding_mode='zeros')

    return output


@register('arbrcan')
class ArbRCAN(nn.Module):
    def __init__(self, encoder_spec=None, conv=default_conv):
        super(ArbRCAN, self).__init__()

        n_resgroups = 10
        n_resblocks = 20
        n_feats = 64
        kernel_size = 3
        reduction = 16
        act = nn.ReLU(True)
        n_colors = 3
        res_scale = 1

        self.n_resgroups = n_resgroups

        # head module
        modules_head = [conv(n_colors, n_feats, kernel_size)]
        self.head = nn.Sequential(*modules_head)

        # body module
        modules_body = [
            ResidualGroup(conv, n_feats, kernel_size, reduction, act=act, res_scale=res_scale,
                          n_resblocks=n_resblocks) \
            for _ in range(n_resgroups)]
        modules_body.append(conv(n_feats, n_feats, kernel_size))
        self.body = nn.Sequential(*modules_body)

        # tail module
        modules_tail = [
            None,                                              # placeholder to match pre-trained RCAN model
            conv(n_feats, n_colors, kernel_size)]
        self.tail = nn.Sequential(*modules_tail)

        ##########   our plug-in module     ##########
        # scale-aware feature adaption block
        # For RCAN, feature adaption is performed after each backbone block, i.e., K=1
        self.K = 1
        sa_adapt = []
        for i in range(self.n_resgroups // self.K):
            sa_adapt.append(SA_adapt(64))
        self.sa_adapt = nn.Sequential(*sa_adapt)

        # scale-aware upsampling layer
        self.sa_upsample = SA_upsample(64)

    def set_scale(self, scale, scale2):
        self.scale = scale
        self.scale2 = scale2

    def forward(self, x, size):
        B, C, H, W = x.shape
        H_up, W_up = size
        scale = H_up / H
        scale2 = W_up / W
        # head
        x = self.head(x)

        # body
        res = x
        for i in range(self.n_resgroups):
            res = self.body[i](res)
            # scale-aware feature adaption
            if (i+1) % self.K == 0:
                res = self.sa_adapt[i](res, scale, scale2)

        res = self.body[-1](res)
        res += x

        # scale-aware upsampling
        res = self.sa_upsample(res, scale, scale2)

        # tail
        x = self.tail[1](res)

        return x