File size: 19,368 Bytes
02c5426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import time
from collections import OrderedDict

import torch
import torch.nn as nn
import math
import torchvision.utils as SI

def make_model(args, parent=False):
    return metafpn(args)


class Pos2Weight(nn.Module):
    def __init__(self, inC, kernel_size=3, outC=3):
        super(Pos2Weight, self).__init__()
        self.inC = inC
        self.kernel_size = kernel_size
        self.outC = outC
        self.meta_block = nn.Sequential(
            nn.Linear(3, 256),
            nn.ReLU(inplace=True),
            nn.Linear(256, 512),
            nn.ReLU(inplace=True),
            nn.Linear(512, self.kernel_size * self.kernel_size * self.inC * self.outC)
        )

    def forward(self, x):
        output = self.meta_block(x)
        return output


class RDB_Conv(nn.Module):
    def __init__(self, inChannels, growRate, kSize=3):
        super(RDB_Conv, self).__init__()
        Cin = inChannels
        G = growRate
        self.conv = nn.Sequential(*[
            nn.Conv2d(Cin, G, kSize, padding=(kSize - 1) // 2, stride=1),
            nn.ReLU()
        ])

    def forward(self, x):
        out = self.conv(x)
        return out


class FPN(nn.Module):
    def __init__(self, G0, kSize=3):
        super(FPN, self).__init__()

        kSize1 = 1
        self.conv1 = RDB_Conv(G0, G0, kSize)
        self.conv2 = RDB_Conv(G0, G0, kSize)
        self.conv3 = RDB_Conv(G0, G0, kSize)
        self.conv4 = RDB_Conv(G0, G0, kSize)
        self.conv5 = RDB_Conv(G0, G0, kSize)
        self.conv6 = RDB_Conv(G0, G0, kSize)
        self.conv7 = RDB_Conv(G0, G0, kSize)
        self.conv8 = RDB_Conv(G0, G0, kSize)
        self.conv9 = RDB_Conv(G0, G0, kSize)
        self.conv10 = RDB_Conv(G0, G0, kSize)
        self.compress_in1 = nn.Conv2d(4 * G0, G0, kSize1, padding=(kSize1 - 1) // 2, stride=1)
        self.compress_in2 = nn.Conv2d(3 * G0, G0, kSize1, padding=(kSize1 - 1) // 2, stride=1)
        self.compress_in3 = nn.Conv2d(2 * G0, G0, kSize1, padding=(kSize1 - 1) // 2, stride=1)
        self.compress_in4 = nn.Conv2d(2 * G0, G0, kSize1, padding=(kSize1 - 1) // 2, stride=1)
        self.compress_out = nn.Conv2d(4 * G0, G0, kSize1, padding=(kSize1 - 1) // 2, stride=1)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv2(x1)
        x3 = self.conv3(x2)
        x4 = self.conv4(x3)
        x11 = x + x4
        x5 = torch.cat((x1, x2, x3, x4), dim=1)
        x5_res = self.compress_in1(x5)
        x5 = self.conv5(x5_res)
        x6 = self.conv6(x5)
        x7 = self.conv7(x6)
        x12 = x5_res + x7
        x8 = torch.cat((x5, x6, x7), dim=1)
        x8_res = self.compress_in2(x8)
        x8 = self.conv8(x8_res)
        x9 = self.conv9(x8)
        x13 = x8_res + x9
        x10 = torch.cat((x8, x9), dim=1)
        x10_res = self.compress_in3(x10)
        x10 = self.conv10(x10_res)
        x14 = x10_res + x10
        output = torch.cat((x11, x12, x13, x14), dim=1)
        output = self.compress_out(output)
        output = output + x
        return output


def default_conv(in_channels, out_channels, kernel_size, bias=True):
    return nn.Conv2d(
        in_channels, out_channels, kernel_size,
        padding=(kernel_size // 2), bias=bias)


class MeanShift(nn.Conv2d):
    def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1):
        super(MeanShift, self).__init__(3, 3, kernel_size=1)
        std = torch.Tensor(rgb_std)
        self.weight.data = torch.eye(3).view(3, 3, 1, 1)
        self.weight.data.div_(std.view(3, 1, 1, 1))
        self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
        self.bias.data.div_(std)
        self.requires_grad = False


class BasicBlock(nn.Sequential):
    def __init__(
            self, in_channels, out_channels, kernel_size, stride=1, bias=False,
            bn=True, act=nn.ReLU(True)):

        m = [nn.Conv2d(
            in_channels, out_channels, kernel_size,
            padding=(kernel_size // 2), stride=stride, bias=bias)
        ]
        if bn: m.append(nn.BatchNorm2d(out_channels))
        if act is not None: m.append(act)
        super(BasicBlock, self).__init__(*m)


class ResBlock(nn.Module):
    def __init__(
            self, conv, n_feats, kernel_size,
            bias=True, bn=False, act=nn.ReLU(True), res_scale=1):

        super(ResBlock, self).__init__()
        m = []
        for i in range(2):
            m.append(conv(n_feats, n_feats, kernel_size, bias=bias))
            if bn: m.append(nn.BatchNorm2d(n_feats))
            if i == 0: m.append(act)

        self.body = nn.Sequential(*m)
        self.res_scale = res_scale

    def forward(self, x):
        res = self.body(x).mul(self.res_scale)
        res += x

        return res


class Upsampler(nn.Sequential):
    def __init__(self, conv, scale, n_feats, bn=False, act=False, bias=True):

        m = []
        if (scale & (scale - 1)) == 0:  # Is scale = 2^n?
            for _ in range(int(math.log(scale, 2))):
                m.append(conv(n_feats, 4 * n_feats, 3, bias))
                m.append(nn.PixelShuffle(2))
                if bn: m.append(nn.BatchNorm2d(n_feats))

                if act == 'relu':
                    m.append(nn.ReLU(True))
                elif act == 'prelu':
                    m.append(nn.PReLU(n_feats))

        elif scale == 3:
            m.append(conv(n_feats, 9 * n_feats, 3, bias))
            m.append(nn.PixelShuffle(3))
            if bn: m.append(nn.BatchNorm2d(n_feats))

            if act == 'relu':
                m.append(nn.ReLU(True))
            elif act == 'prelu':
                m.append(nn.PReLU(n_feats))
        else:
            raise NotImplementedError

        super(Upsampler, self).__init__(*m)


class ResidualDenseBlock_8C(nn.Module):
    '''
    Residual Dense Block
    style: 8 convs
    The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
    '''

    def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', norm_type=None, act_type='relu',
                 mode='CNA'):
        super(ResidualDenseBlock_8C, self).__init__()
        # gc: growth channel, i.e. intermediate channels
        self.conv1 = ConvBlock(nc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type,
                               act_type=act_type, mode=mode)
        self.conv2 = ConvBlock(nc + gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type,
                               act_type=act_type, mode=mode)
        self.conv3 = ConvBlock(nc + 2 * gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type,
                               act_type=act_type, mode=mode)
        self.conv4 = ConvBlock(nc + 3 * gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type,
                               act_type=act_type, mode=mode)
        self.conv5 = ConvBlock(nc + 4 * gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type,
                               act_type=act_type, mode=mode)
        self.conv6 = ConvBlock(nc + 5 * gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type,
                               act_type=act_type, mode=mode)
        self.conv7 = ConvBlock(nc + 6 * gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type,
                               act_type=act_type, mode=mode)
        self.conv8 = ConvBlock(nc + 7 * gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, norm_type=norm_type,
                               act_type=act_type, mode=mode)
        if mode == 'CNA':
            last_act = None
        else:
            last_act = act_type
        self.conv9 = ConvBlock(nc + 8 * gc, nc, 1, stride, bias=bias, pad_type=pad_type, norm_type=norm_type,
                               act_type=last_act, mode=mode)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv2(torch.cat((x, x1), 1))
        x3 = self.conv3(torch.cat((x, x1, x2), 1))
        x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
        x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
        x6 = self.conv6(torch.cat((x, x1, x2, x3, x4, x5), 1))
        x7 = self.conv7(torch.cat((x, x1, x2, x3, x4, x5, x6), 1))
        x8 = self.conv8(torch.cat((x, x1, x2, x3, x4, x5, x6, x7), 1))
        x9 = self.conv9(torch.cat((x, x1, x2, x3, x4, x5, x6, x7, x8), 1))
        return x9.mul(0.2) + x


def ConvBlock(in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, valid_padding=True, padding=0, \
              act_type='relu', norm_type='bn', pad_type='zero', mode='CNA'):
    assert (mode in ['CNA', 'NAC']), '[ERROR] Wrong mode in [%s]!' % sys.modules[__name__]

    if valid_padding:
        padding = get_valid_padding(kernel_size, dilation)
    else:
        pass
    p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
    conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation,
                     bias=bias)

    if mode == 'CNA':
        act = activation(act_type) if act_type else None
        n = norm(out_channels, norm_type) if norm_type else None
        return sequential(p, conv, n, act)
    elif mode == 'NAC':
        act = activation(act_type, inplace=False) if act_type else None
        n = norm(in_channels, norm_type) if norm_type else None
        return sequential(n, act, p, conv)


def DeconvBlock(in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, padding=0, \
                act_type='relu', norm_type='bn', pad_type='zero', mode='CNA'):
    assert (mode in ['CNA', 'NAC']), '[ERROR] Wrong mode in [%s]!' % sys.modules[__name__]

    p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
    deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, dilation=dilation, bias=bias)

    if mode == 'CNA':
        act = activation(act_type) if act_type else None
        n = norm(out_channels, norm_type) if norm_type else None
        return sequential(p, deconv, n, act)
    elif mode == 'NAC':
        act = activation(act_type, inplace=False) if act_type else None
        n = norm(in_channels, norm_type) if norm_type else None
        return sequential(n, act, p, deconv)


def get_valid_padding(kernel_size, dilation):
    """
    Padding value to remain feature size.
    """
    kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
    padding = (kernel_size - 1) // 2
    return padding


def pad(pad_type, padding):
    pad_type = pad_type.lower()
    if padding == 0:
        return None

    layer = None
    if pad_type == 'reflect':
        layer = nn.ReflectionPad2d(padding)
    elif pad_type == 'replicate':
        layer = nn.ReplicationPad2d(padding)
    else:
        raise NotImplementedError('[ERROR] Padding layer [%s] is not implemented!' % pad_type)
    return layer


def activation(act_type='relu', inplace=True, slope=0.2, n_prelu=1):
    act_type = act_type.lower()
    layer = None
    if act_type == 'relu':
        layer = nn.ReLU(inplace)
    elif act_type == 'lrelu':
        layer = nn.LeakyReLU(slope, inplace)
    elif act_type == 'prelu':
        layer = nn.PReLU(num_parameters=n_prelu, init=slope)
    else:
        raise NotImplementedError('[ERROR] Activation layer [%s] is not implemented!' % act_type)
    return layer


def norm(n_feature, norm_type='bn'):
    norm_type = norm_type.lower()
    layer = None
    if norm_type == 'bn':
        layer = nn.BatchNorm2d(n_feature)
    else:
        raise NotImplementedError('[ERROR] Normalization layer [%s] is not implemented!' % norm_type)
    return layer


def sequential(*args):
    if len(args) == 1:
        if isinstance(args[0], OrderedDict):
            raise NotImplementedError('[ERROR] %s.sequential() does not support OrderedDict' % sys.modules[__name__])
        else:
            return args[0]
    modules = []
    for module in args:
        if isinstance(module, nn.Sequential):
            for submodule in module:
                modules.append(submodule)
        elif isinstance(module, nn.Module):
            modules.append(module)
    return nn.Sequential(*modules)

class FeedbackBlock(nn.Module):
    def __init__(self, num_features, num_groups, upscale_factor, act_type, norm_type):
        super(FeedbackBlock, self).__init__()
        if upscale_factor == 2:
            stride = 2
            padding = 2
            kernel_size = 6
        elif upscale_factor == 3:
            stride = 3
            padding = 2
            kernel_size = 7
        elif upscale_factor == 4:
            stride = 4
            padding = 2
            kernel_size = 8
        elif upscale_factor == 8:
            stride = 8
            padding = 2
            kernel_size = 12

        kSize = 3
        kSize1 = 1

        self.fpn1 = FPN(num_features)
        self.fpn2 = FPN(num_features)
        self.fpn3 = FPN(num_features)
        self.fpn4 = FPN(num_features)
        self.compress_in = nn.Conv2d(2 * num_features, num_features, kSize1, padding=(kSize1 - 1) // 2, stride=1)
        self.compress_out = nn.Conv2d(4 * num_features, num_features, kSize1, padding=(kSize1 - 1) // 2, stride=1)

    def forward(self, x):
        if self.should_reset:
            self.last_hidden = torch.zeros(x.size()).cuda()
            self.last_hidden.copy_(x)
            self.should_reset = False

        x = torch.cat((x, self.last_hidden), dim=1)  # tense拼接
        x = self.compress_in(x)

        fpn1 = self.fpn1(x)
        fpn2 = self.fpn2(fpn1)
        fpn3 = self.fpn3(fpn2)
        fpn4 = self.fpn4(fpn3)
        output = torch.cat((fpn1, fpn2, fpn3, fpn4), dim=1)
        output = self.compress_out(output)

        self.last_hidden = output

        return output

    def reset_state(self):
        self.should_reset = True


class metafpn(nn.Module):
    def __init__(self,
                 RDNkSize=3,
                 G0=64,
                 n_colors=3,
                 act_type='prelu',
                 norm_type=None
                 ):
        super(metafpn, self).__init__()  # 第一句话,调用父类的构造函数,这是对继承自父类的属性进行初始化。而且是用父类的初始化方法来初始化继承的属性。也就是说,子类继承了父类的所有属性和方法,父类属性自然会用父类方法来进行初始化。当然,如果初始化的逻辑与父类的不同,不使用父类的方法,自己重新初始化也是可以的。

        kernel_size = RDNkSize
        self.num_steps = 4
        self.num_features = G0
        self.scale_idx = 0
        self.scale = 1
        in_channels = n_colors
        num_groups = 6

        # RGB mean for DIV2K
        # rgb_mean = (0.4488, 0.4371, 0.4040)
        # rgb_std = (1.0, 1.0, 1.0)
        # self.sub_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std)
        # self.add_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)

        # LR feature extraction block
        self.conv_in = ConvBlock(in_channels, 4 * self.num_features,
                                        # 3×3Conv      一个卷积核产生一个feature map就是num_features
                                        kernel_size=3,
                                        act_type=act_type, norm_type=norm_type)
        self.feat_in = ConvBlock(4 * self.num_features, self.num_features,
                                        kernel_size=1,
                                        act_type=act_type, norm_type=norm_type)

        # basic block
        self.block = FeedbackBlock(self.num_features, num_groups, self.scale, act_type, norm_type)

        # reconstruction block
        # uncomment for pytorch 0.4.0
        # self.upsample = nn.Upsample(scale_factor=upscale_factor, mode='bilinear')

        # self.out = DeconvBlock(num_features, num_features,
        #                        kernel_size=kernel_size, stride=stride, padding=padding,
        #                        act_type='prelu', norm_type=norm_type)
        self.P2W = Pos2Weight(inC=self.num_features)

    def repeat_x(self, x):
        scale_int = math.ceil(self.scale)
        N, C, H, W = x.size()
        x = x.view(N, C, H, 1, W, 1)

        x = torch.cat([x] * scale_int, 3)
        x = torch.cat([x] * scale_int, 5).permute(0, 3, 5, 1, 2, 4)

        return x.contiguous().view(-1, C, H, W)

    def forward(self, x, pos_mat):
        self._reset_state()

        # x = self.sub_mean(x)
        scale_int = math.ceil(self.scale)
        # uncomment for pytorch 0.4.0
        # inter_res = self.upsample(x)

        # comment for pytorch 0.4.0
        inter_res = nn.functional.interpolate(x, scale_factor=scale_int, mode='bilinear', align_corners=False)

        x = self.conv_in(x)
        x = self.feat_in(x)

        outs = []
        for _ in range(self.num_steps):
            h = self.block(x)
            
            #output1 = h.clone()
           # for i in range(60):
             #   output2 = output1[:,i:i+3,:,:]
              #  SI.save_image(output2,"results/result"+str(i)+".png")
            
            # meta###########################################
            local_weight = self.P2W(
                pos_mat.view(pos_mat.size(1), -1))  ###   (outH*outW, outC*inC*kernel_size*kernel_size)
            up_x = self.repeat_x(h)  ### the output is (N*r*r,inC,inH,inW)

            # N*r^2 x [inC * kH * kW] x [inH * inW]
            cols = nn.functional.unfold(up_x, 3, padding=1)
            scale_int = math.ceil(self.scale)

            cols = cols.contiguous().view(cols.size(0) // (scale_int ** 2), scale_int ** 2, cols.size(1), cols.size(2),
                                          1).permute(0, 1, 3, 4, 2).contiguous()

            local_weight = local_weight.contiguous().view(x.size(2), scale_int, x.size(3), scale_int, -1, 3).permute(1,
                                                                                                                     3,
                                                                                                                     0,
                                                                                                                     2,
                                                                                                                     4,
                                                                                                                     5).contiguous()
            local_weight = local_weight.contiguous().view(scale_int ** 2, x.size(2) * x.size(3), -1, 3)

            out = torch.matmul(cols, local_weight).permute(0, 1, 4, 2, 3)
            out = out.contiguous().view(x.size(0), scale_int, scale_int, 3, x.size(2), x.size(3)).permute(0, 3, 4, 1, 5,
                                                                                                          2)
            out = out.contiguous().view(x.size(0), 3, scale_int * x.size(2), scale_int * x.size(3))

            h = torch.add(inter_res, out)
            # h = self.add_mean(h)
                 
            outs.append(h)

        return outs  # return output of every timesteps

    def _reset_state(self):
        self.block.reset_state()

    def set_scale(self, scale_idx):
        self.scale_idx = scale_idx
        self.scale = self.args.scale[scale_idx]