from __future__ import absolute_import import torch from torch import nn from .encoder_id import Backbone import torch.nn.functional as F class IDLoss(nn.Module): def __init__(self, model_path, num_scales=1): super(IDLoss, self).__init__() print('Loading ResNet ArcFace') self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se') self.facenet.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) self.facenet.eval() self.num_scales = num_scales for module in [self.facenet, self.face_pool]: for param in module.parameters(): param.requires_grad = False def extract_feats(self, x): x = x[:, :, 35:223, 32:220] # Crop interesting region x = self.face_pool(x) x_feats = self.facenet(x) return x_feats def forward(self, x, y): n_samples = x.shape[0] loss = 0.0 for _scale in range(self.num_scales): x_feats = self.extract_feats(x) y_feats = self.extract_feats(y) for i in range(n_samples): diff_target = y_feats[i].dot(x_feats[i]) loss += 1 - diff_target if _scale != self.num_scales - 1: x = F.interpolate(x, mode='bilinear', scale_factor=0.5, align_corners=False, recompute_scale_factor=True) y = F.interpolate(y, mode='bilinear', scale_factor=0.5, align_corners=False, recompute_scale_factor=True) return loss / n_samples def psp_forward(self, y_hat, y, x): n_samples = x.shape[0] x_feats = self.extract_feats(x) y_feats = self.extract_feats(y) # Otherwise use the feature from there y_hat_feats = self.extract_feats(y_hat) y_feats = y_feats.detach() loss = 0 sim_improvement = 0 id_logs = [] count = 0 for i in range(n_samples): diff_target = y_hat_feats[i].dot(y_feats[i]) diff_input = y_hat_feats[i].dot(x_feats[i]) diff_views = y_feats[i].dot(x_feats[i]) id_logs.append({'diff_target': float(diff_target), 'diff_input': float(diff_input), 'diff_views': float(diff_views)}) loss += 1 - diff_target id_diff = float(diff_target) - float(diff_views) sim_improvement += id_diff count += 1 return loss / count, sim_improvement / count, id_logs