Spaces:
Running
on
Zero
Running
on
Zero
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary | |
# | |
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
# property and proprietary rights in and to this material, related | |
# documentation and any modifications thereto. Any use, reproduction, | |
# disclosure or distribution of this material and related documentation | |
# without an express license agreement from NVIDIA CORPORATION or | |
# its affiliates is strictly prohibited. | |
import torch | |
import torchvision | |
from torch_utils import persistence | |
from training_avatar_texture.networks_stylegan2_new import Generator as StyleGAN2Backbone_cond | |
from training_avatar_texture.volumetric_rendering.renderer import fill_mouth | |
class TriPlaneGenerator(torch.nn.Module): | |
def __init__(self, | |
z_dim, # Input latent (Z) dimensionality. | |
c_dim, # Conditioning label (C) dimensionality. | |
w_dim, # Intermediate latent (W) dimensionality. | |
img_resolution, # Output resolution. | |
img_channels, # Number of output color channels. | |
use_tanh=False, | |
use_two_rgb=False, | |
use_norefine_rgb = False, | |
topology_path=None, # | |
sr_num_fp16_res=0, | |
mapping_kwargs={}, # Arguments for MappingNetwork. | |
rendering_kwargs={}, | |
sr_kwargs={}, | |
**synthesis_kwargs, # Arguments for SynthesisNetwork. | |
): | |
super().__init__() | |
self.z_dim = z_dim | |
self.c_dim = c_dim | |
self.w_dim = w_dim | |
self.img_resolution = img_resolution | |
self.img_channels = img_channels | |
self.texture_backbone = StyleGAN2Backbone_cond(z_dim, c_dim, w_dim, img_resolution=256, img_channels=32, | |
mapping_kwargs=mapping_kwargs, use_tanh=use_tanh, | |
**synthesis_kwargs) # render neural texture | |
self.backbone = StyleGAN2Backbone_cond(z_dim, c_dim, w_dim, img_resolution=256, img_channels=32 * 3, | |
mapping_ws=self.texture_backbone.num_ws, use_tanh=use_tanh, | |
mapping_kwargs=mapping_kwargs, **synthesis_kwargs) | |
self.neural_rendering_resolution = 128 | |
self.rendering_kwargs = rendering_kwargs | |
self.fill_mouth = True | |
self.use_two_rgb = use_two_rgb | |
self.use_norefine_rgb = use_norefine_rgb | |
# print(self.use_two_rgb) | |
def mapping(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False): | |
if self.rendering_kwargs['c_gen_conditioning_zero']: | |
c = torch.zeros_like(c) | |
c = c[:, :self.c_dim] # remove expression labels | |
return self.backbone.mapping(z, c * self.rendering_kwargs.get('c_scale', 0), truncation_psi=truncation_psi, | |
truncation_cutoff=truncation_cutoff, update_emas=update_emas) | |
def visualize_mesh_condition(self, mesh_condition, to_imgs=False): | |
uvcoords_image = mesh_condition['uvcoords_image'].clone().permute(0, 3, 1, 2) # [B, C, H, W] | |
ori_alpha_image = uvcoords_image[:, 2:].clone() | |
full_alpha_image, mouth_masks = fill_mouth(ori_alpha_image, blur_mouth_edge=False) | |
# upper_mouth_mask = mouth_masks.clone() | |
# upper_mouth_mask[:, :, :87] = 0 | |
# alpha_image = torch.clamp(ori_alpha_image + upper_mouth_mask, min=0, max=1) | |
if to_imgs: | |
uvcoords_image[full_alpha_image.expand(-1, 3, -1, -1) == 0] = -1 | |
uvcoords_image = ((uvcoords_image + 1) * 127.5).to(dtype=torch.uint8).cpu() | |
vis_images = [] | |
for vis_uvcoords in uvcoords_image: | |
vis_images.append(torchvision.transforms.ToPILImage()(vis_uvcoords)) | |
return vis_images | |
else: | |
return uvcoords_image | |
def synthesis(self, ws, neural_rendering_resolution=None, update_emas=False, | |
cache_backbone=False, use_cached_backbone=False, | |
return_featmap=False, evaluation=False, **synthesis_kwargs): | |
# Create a batch of rays for volume rendering | |
texture_feat = self.texture_backbone.synthesis(ws, cond_list=None, return_list=False, update_emas=update_emas, | |
**synthesis_kwargs) | |
static_feat = self.backbone.synthesis(ws, cond_list=None, return_list=False, update_emas=update_emas, | |
**synthesis_kwargs) | |
static_plane = static_feat | |
static_plane = static_plane.view(len(static_plane), 3, 32, static_plane.shape[-2], static_plane.shape[-1]) | |
texture_feat_out = texture_feat.unsqueeze(1) | |
out_triplane = torch.cat([texture_feat_out, static_plane], 1) | |
return out_triplane | |
def forward(self, z, c, v, truncation_psi=1, truncation_cutoff=None, neural_rendering_resolution=None, | |
update_emas=False, cache_backbone=False, | |
use_cached_backbone=False, **synthesis_kwargs): | |
# Render a batch of generated images. | |
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, | |
update_emas=update_emas) | |
return self.synthesis(ws, c, v, update_emas=update_emas, | |
neural_rendering_resolution=neural_rendering_resolution, | |
cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone, | |
**synthesis_kwargs) | |