Spaces:
Running
on
Zero
Running
on
Zero
File size: 45,814 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
# Generator for GenHead, modified from EG3D: https://github.com/NVlabs/eg3d
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import torch
from torch import nn
from torch_utils import persistence
from models.stylegan.networks_stylegan2 import Generator as StyleGAN2Backbone
from models.stylegan.networks_stylegan2 import ToRGBLayer, FullyConnectedLayer, SynthesisNetwork
from models.stylegan.superresolution import SuperresolutionPatchMLP
from training.deformer.deformation import DeformationModule, DeformationModuleOnlyHead
from training.deformer.deform_utils import cam_world_matrix_transform
from training.volumetric_rendering.renderer import ImportanceRenderer, DeformImportanceRenderer, PartDeformImportanceRenderer, DeformImportanceRendererNew
from training.volumetric_rendering.ray_sampler import RaySampler
import dnnlib
import torch.nn.functional as F
from torch_utils.ops import upfirdn2d
import copy
# Baseline generator without separate deformation for face, eyes, and mouth
@persistence.persistent_class
class TriPlaneGeneratorDeform(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality.
c_dim, # Conditioning label (C) dimensionality.
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output resolution.
img_channels, # Number of output color channels.
sr_num_fp16_res = 0,
mapping_kwargs = {}, # Arguments for MappingNetwork.
rendering_kwargs = {},
deformation_kwargs = {},
sr_kwargs = {},
has_background = True,
has_superresolution = False,
flame_condition = False,
flame_full = False,
dynamic_texture = False, # Deprecated
random_combine = True,
triplane_resolution = 256,
triplane_channels = 96,
masked_sampling = None,
has_patch_sr = False,
add_block = False,
**synthesis_kwargs, # Arguments for SynthesisNetwork.
):
super().__init__()
self.z_dim=z_dim
self.c_dim=c_dim
self.w_dim=w_dim
self.flame_condition = flame_condition
self.has_background = has_background
self.has_superresolution = has_superresolution
self.dynamic_texture = dynamic_texture
decoder_output_dim = 32 if has_superresolution else 3
self.img_resolution=img_resolution
self.img_channels=img_channels
self.renderer = DeformImportanceRenderer()
self.ray_sampler = RaySampler()
self.backbone = StyleGAN2Backbone(z_dim, c_dim, w_dim, img_resolution=256, img_channels=32*3, mapping_kwargs=mapping_kwargs, **synthesis_kwargs)
self.to_dynamic = None
if self.has_background:
self.background = StyleGAN2Backbone(z_dim, 0, w_dim, img_resolution=64, mapping_kwargs={'num_layers':8}, channel_base=16384, img_channels=decoder_output_dim)
if self.has_superresolution:
self.superresolution = dnnlib.util.construct_class_by_name(class_name=rendering_kwargs['superresolution_module'], channels=32, img_resolution=img_resolution, sr_num_fp16_res=sr_num_fp16_res, sr_antialias=rendering_kwargs['sr_antialias'], **sr_kwargs)
else:
self.superresolution = None
self.decoder = OSGDecoder(32, {'decoder_lr_mul': rendering_kwargs.get('decoder_lr_mul', 1), 'decoder_output_dim': decoder_output_dim})
self.neural_rendering_resolution = 64
self.rendering_kwargs = rendering_kwargs
self.deformer = DeformationModule(flame_full=flame_full,dynamic_texture=dynamic_texture, **deformation_kwargs)
self._last_planes = None
def _deformer(self,shape_params,exp_params,pose_params,eye_pose_params,ws,c_deform,cache_backbone=False, use_cached_backbone=False, use_rotation_limits=False, eye_blink_params=None):
return lambda coordinates: self.deformer(coordinates, shape_params,exp_params,pose_params,eye_pose_params,ws,c_deform,cache_backbone=cache_backbone,use_cached_backbone=use_cached_backbone, use_rotation_limits=use_rotation_limits)
def mapping(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False):
if self.rendering_kwargs['c_gen_conditioning_zero']:
c = torch.zeros_like(c)
return self.backbone.mapping(z, c * self.rendering_kwargs.get('c_scale', 0), truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
def synthesis(self, ws, z_bg, c, _deformer, neural_rendering_resolution=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, use_dynamic=False,use_rotation_limits=None, smpl_param=None, patch_scale=None, chunk=None, run_full=None, uv=None, diff_dynamic=False, forward_mode='train', eye_blink_params=None, ws_super=None, **synthesis_kwargs):
if forward_mode == 'train':
face_ws = ws
dynamic_ws = ws
# for inversion only
elif ws.shape[1] >= self.backbone.num_ws + self.background.num_ws:
face_ws, bg_ws, dynamic_ws = ws[:, :self.backbone.num_ws, :], ws[:, self.backbone.num_ws:self.backbone.num_ws+self.background.num_ws, :], ws[:, self.backbone.num_ws+self.background.num_ws:, :]
else:
face_ws, bg_ws, dynamic_ws = ws[:, :self.backbone.num_ws, :], ws[:, self.backbone.num_ws:-1, :], ws[:, self.backbone.num_ws-1:self.backbone.num_ws, :]
cam2world_matrix = c[:, :16].view(-1, 4, 4)
world2cam_matrix = cam_world_matrix_transform(cam2world_matrix)
cam_z = world2cam_matrix[:,2,3]
intrinsics = c[:, 16:25].view(-1, 3, 3)
if neural_rendering_resolution is None:
neural_rendering_resolution = self.neural_rendering_resolution
else:
self.neural_rendering_resolution = neural_rendering_resolution
# Create a batch of rays for volume rendering
ray_origins, ray_directions, _ = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution)
# Create triplanes by running StyleGAN backbone
N, M, _ = ray_origins.shape
if use_cached_backbone and self._last_planes is not None:
planes = self._last_planes
else:
planes, last_featuremap = self.backbone.synthesis(face_ws, update_emas=update_emas, **synthesis_kwargs)
if cache_backbone:
self._last_planes = planes
planes = planes.view(len(planes), 3, -1, planes.shape[-2], planes.shape[-1])
if self.dynamic_texture:
pass # deprecated
else:
dynamic_planes = None
# Perform volume rendering
feature_samples, depth_samples, all_depths, all_weights, T_bg, offset, dist_to_surface, vts_mask, vts_mask_region, coarse_sample_points, coarse_triplane_features = self.renderer(planes, self.decoder, _deformer, ray_origins, ray_directions, self.rendering_kwargs, dynamic=self.dynamic_texture, cam_z=cam_z) # channels last
weights_samples = all_weights.sum(2)
# Reshape into 'raw' neural-rendered image
H = W = self.neural_rendering_resolution
feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous()
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
# background
if self.has_background:
if forward_mode == 'train':
background = self.background(z_bg, c, **synthesis_kwargs)
else:
background, _ = self.background.synthesis(bg_ws, update_emas=update_emas, **synthesis_kwargs)
background = torch.sigmoid(background) # (-1,1) (N,3,H,W)
if background.shape[-1] != neural_rendering_resolution:
background = F.interpolate(background,size=(neural_rendering_resolution,neural_rendering_resolution),mode='bilinear')
T_bg = T_bg.permute(0, 2, 1).reshape(N, 1, H, W)
feature_image = feature_image + T_bg*background
else:
T_bg = T_bg.permute(0, 2, 1).reshape(N, 1, H, W)
background = 0.
feature_image = 2*feature_image - 1
rgb_image = feature_image[:, :3]
if self.superresolution is not None:
sr_image = self.superresolution(rgb_image, feature_image, face_ws, ws_super=ws_super, noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'})
else:
sr_image = None
return {'image': rgb_image, 'image_feature':feature_image, 'image_sr':sr_image, 'image_depth': depth_image, 'background':2*background-1, 'interval':all_depths.squeeze(-1), 'all_weights':all_weights.squeeze(-1), 'T_bg': T_bg, \
'seg': (1 - T_bg)*2 - 1, 'offset':offset, 'dist_to_surface':dist_to_surface, 'vts_mask':vts_mask, 'vts_mask_region':vts_mask_region, 'dynamic_planes':dynamic_planes, 'coarse_sample_points':coarse_sample_points, 'coarse_triplane_features':coarse_triplane_features}
def sample(self, coordinates, directions, shape_params,exp_params,pose_params,eye_pose_params, z, c, use_deform=True, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
# Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes.
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
planes, last_featuremap = self.backbone.synthesis(ws, update_emas=update_emas, **synthesis_kwargs)
planes = planes.view(len(planes), 3, -1, planes.shape[-2], planes.shape[-1])
# target space to canonical space deformation
if use_deform:
_deformer = self._deformer(shape_params,exp_params,pose_params,eye_pose_params)
out_deform = _deformer(coordinates)
coordinates = out_deform['canonical']
offset = out_deform['offset']
dynamic_mask = out_deform['dynamic_mask']
else:
coordinates = coordinates
offset = torch.zeros_like(coordinates)
dynamic_mask = None
out = self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs, dynamic_mask=dynamic_mask)
out['canonical'] = coordinates
out['offset'] = offset
return out
def sample_mixed(self, coordinates, directions, shape_params,exp_params,pose_params,eye_pose_params, ws, use_deform=True, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
# Same as sample, but expects latent vectors 'ws' instead of Gaussian noise 'z'
planes, last_featuremap = self.backbone.synthesis(ws, update_emas = update_emas, **synthesis_kwargs)
# planes = torch.tanh(planes)
planes = planes.view(len(planes), 3, -1, planes.shape[-2], planes.shape[-1])
# target space to canonical space deformation
if use_deform:
_deformer = self._deformer(shape_params,exp_params,pose_params,eye_pose_params)
out_deform = _deformer(coordinates)
coordinates = out_deform['canonical']
offset = out_deform['offset']
dynamic_mask = out_deform['dynamic_mask']
else:
coordinates = coordinates
offset = torch.zeros_like(coordinates)
dynamic_mask = None
out = self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs, dynamic_mask=dynamic_mask)
out['canonical'] = coordinates
out['offset'] = offset
return out
def forward(self, shape_params,exp_params,pose_params,eye_pose_params, z, z_bg, c, c_compose, truncation_psi=1, truncation_cutoff=None, neural_rendering_resolution=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, patch_scale=None, **synthesis_kwargs):
# Render a batch of generated images.
_deformer = self._deformer(shape_params,exp_params,pose_params,eye_pose_params)
c_compose_condition = c_compose.clone()
if self.flame_condition:
c_compose_condition = torch.cat([c_compose_condition,shape_params,exp_params],dim=-1)
ws = self.mapping(z, c_compose_condition, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
# Render correspondence map as condition to the discriminator
uv = self.deformer.renderer(shape_params, exp_params, pose_params, eye_pose_params, c, half_size=int(self.img_resolution/2))[0]
img = self.synthesis(ws, z_bg, c, _deformer=_deformer, update_emas=update_emas, neural_rendering_resolution=neural_rendering_resolution, cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone, **synthesis_kwargs)
img['uv'] = uv
return img
# Generator used in GenHead, with part-wise deformation
@persistence.persistent_class
class PartTriPlaneGeneratorDeform(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality.
c_dim, # Conditioning label (C) dimensionality.
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output resolution.
img_channels, # Number of output color channels.
triplane_channels,
sr_num_fp16_res = 0,
mapping_kwargs = {}, # Arguments for MappingNetwork.
rendering_kwargs = {},
deformation_kwargs = {},
sr_kwargs = {},
has_background = True,
has_superresolution = False,
has_patch_sr = False,
flame_condition = True,
flame_full = False,
dynamic_texture = False, # Deprecated
random_combine = True,
add_block = False,
triplane_resolution = 256,
masked_sampling = False,
**synthesis_kwargs, # Arguments for SynthesisNetwork.
):
super().__init__()
self.z_dim=z_dim
self.c_dim=c_dim
self.w_dim=w_dim
self.flame_condition = flame_condition
self.dynamic_texture = dynamic_texture
self.has_background = has_background
self.has_superresolution = has_superresolution
self.has_patch_sr = has_patch_sr
decoder_output_dim = 32 if has_superresolution else 3
self.img_resolution=img_resolution
self.img_channels=img_channels
self.renderer = PartDeformImportanceRenderer() if triplane_channels>96 else DeformImportanceRenderer()
self.mouth_part = True #if triplane_channels>192 else False
self.mouth_dynamic = False
self.masked_sampling = masked_sampling
self.ray_sampler = RaySampler()
self.backbone = StyleGAN2Backbone(z_dim, c_dim, w_dim, img_resolution=triplane_resolution, img_channels=triplane_channels, mapping_kwargs=mapping_kwargs, add_block=add_block, **synthesis_kwargs)
if self.has_background:
self.background = StyleGAN2Backbone(z_dim, 0, w_dim, img_resolution=64, mapping_kwargs={'num_layers':8}, channel_base=16384, img_channels=decoder_output_dim)
if self.has_superresolution:
self.superresolution = dnnlib.util.construct_class_by_name(class_name=rendering_kwargs['superresolution_module'], channels=32, img_resolution=img_resolution, sr_num_fp16_res=sr_num_fp16_res, sr_antialias=rendering_kwargs['sr_antialias'], **sr_kwargs)
else:
self.superresolution = None
self.decoder = OSGDecoder(32, {'decoder_lr_mul': rendering_kwargs.get('decoder_lr_mul', 1), 'decoder_output_dim': decoder_output_dim})
self.neural_rendering_resolution = 64
self.rendering_kwargs = rendering_kwargs
if self.has_patch_sr:
self.patch_sr = SuperresolutionPatchMLP(channels=32, img_resolution=None, sr_num_fp16_res=sr_num_fp16_res, sr_antialias=True)
self.to_dynamic = None
self.to_dynamic_sr = None
self.deformer = DeformationModule(flame_full=flame_full,dynamic_texture=dynamic_texture,part=True,**deformation_kwargs)
self._last_planes = None
self._last_dynamic_planes = None
self.max_pool = nn.MaxPool2d(kernel_size=7, stride=1, padding=3)
def _warping(self,images,flows):
# images [(B, M, C, H, W)]
# flows (B, M, 2, H, W) # inverse warpping flow
warp_images = []
B, M, _, H_f, W_f = flows.shape
flows = flows.view(B*M,2,H_f, W_f)
for im in images:
B, M, C, H, W = im.shape
im = im.view(B*M, C, H, W)
y, x = torch.meshgrid(torch.linspace(-1, 1, H, dtype=torch.float32, device=im.device), torch.linspace(-1, 1, W, dtype=torch.float32, device=im.device), indexing='ij')
xy = torch.stack([x, y], dim=-1).unsqueeze(0).repeat(B,1,1,1) #(B,H,W,2)
if H_f != H:
_flows = F.interpolate(flows,size=(H,W), mode='bilinear', align_corners=True)
else:
_flows = flows
_flows = _flows.permute(0,2,3,1) #(B,H,W,2)
uv = _flows + xy
warp_image = F.grid_sample(im, uv, mode='bilinear', padding_mode='zeros', align_corners=True) #(B,C,H,W)
warp_image = warp_image.view(B, M, C, H, W)
warp_images.append(warp_image)
return warp_images
def _deformer(self,shape_params,exp_params,pose_params,eye_pose_params,eye_blink_params=None,exp_params_dynamics=None,cache_backbone=False, use_cached_backbone=False,use_rotation_limits=False):
return lambda coordinates, mouth: self.deformer(coordinates, shape_params,exp_params,pose_params,eye_pose_params,eye_blink_params=eye_blink_params,exp_params_dynamics=exp_params_dynamics,cache_backbone=cache_backbone,use_cached_backbone=use_cached_backbone,use_rotation_limits=use_rotation_limits,mouth=mouth)
def mapping(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False):
if self.rendering_kwargs['c_gen_conditioning_zero']:
c = torch.zeros_like(c)
return self.backbone.mapping(z, c * self.rendering_kwargs.get('c_scale', 0), truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
def synthesis(self, ws, z_bg, c, _deformer, neural_rendering_resolution=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, use_dynamic=False, use_rotation_limits=None, smpl_param=None, eye_blink_params=None, patch_scale=1.0, run_full=True, uv=None, chunk=None, diff_dynamic=False, dense_eye=False, forward_mode='train', ws_super=None, **synthesis_kwargs):
if forward_mode == 'train':
face_ws = ws
dynamic_ws = ws
# for inversion only
elif ws.shape[1] >= self.backbone.num_ws + self.background.num_ws:
face_ws, bg_ws, dynamic_ws = ws[:, :self.backbone.num_ws, :], ws[:, self.backbone.num_ws:self.backbone.num_ws+self.background.num_ws, :], ws[:, self.backbone.num_ws+self.background.num_ws:, :]
else:
face_ws, bg_ws, dynamic_ws = ws[:, :self.backbone.num_ws, :], ws[:, self.backbone.num_ws:-1, :], ws[:, self.backbone.num_ws-1:self.backbone.num_ws, :]
cam2world_matrix = c[:, :16].view(-1, 4, 4)
world2cam_matrix = cam_world_matrix_transform(cam2world_matrix)
cam_z = world2cam_matrix[:,2,3]
intrinsics = c[:, 16:25].view(-1, 3, 3)
N = cam2world_matrix.shape[0]
if neural_rendering_resolution is None:
neural_rendering_resolution = self.neural_rendering_resolution
elif self.training:
self.neural_rendering_resolution = neural_rendering_resolution
H = W = neural_rendering_resolution
with torch.no_grad():
eye_mask = self.deformer.renderer(smpl_param[0], smpl_param[1], smpl_param[2], smpl_param[3], c, half_size = int(self.img_resolution/2), eye_blink_params=eye_blink_params, eye_mask=True, use_rotation_limits=use_rotation_limits)[1]
face_wo_eye_mask = self.deformer.renderer(smpl_param[0], smpl_param[1], smpl_param[2], smpl_param[3], c, half_size = int(self.img_resolution/2), eye_blink_params=eye_blink_params, face_woeye=True, use_rotation_limits=use_rotation_limits)[1]
eye_mask = eye_mask * (1-face_wo_eye_mask)
blur_sigma = 1
blur_size = blur_sigma * 3
f = torch.arange(-blur_size, blur_size + 1, device=eye_mask.device).div(blur_sigma).square().neg().exp2()
eye_mask_sr = upfirdn2d.filter2d(eye_mask, f / f.sum())
eye_mask = torch.nn.functional.interpolate(eye_mask, size=(self.neural_rendering_resolution), mode='bilinear', align_corners=False, antialias=True)
head_mask = self.deformer.renderer(smpl_param[0], smpl_param[1], smpl_param[2], smpl_param[3], c, half_size = int(self.img_resolution/2), eye_blink_params=eye_blink_params, only_face=False,cull_backfaces=False, use_rotation_limits=use_rotation_limits)[1]
if self.mouth_part:
head_wo_mouth_mask = self.deformer.renderer(smpl_param[0], smpl_param[1], smpl_param[2], smpl_param[3], c, half_size = int(self.img_resolution/2), eye_blink_params=eye_blink_params, only_face=False,cull_backfaces=True, noinmouth=True, use_rotation_limits=use_rotation_limits)[1]
mouth_mask = head_mask * (1-head_wo_mouth_mask)
mouth_mask_sr = -self.max_pool(-mouth_mask)
mouth_mask_sr = self.max_pool(mouth_mask_sr)
blur_sigma = 2
blur_size = blur_sigma * 3
f = torch.arange(-blur_size, blur_size + 1, device=mouth_mask_sr.device).div(blur_sigma).square().neg().exp2()
mouth_mask_sr = upfirdn2d.filter2d(mouth_mask_sr, f / f.sum())
mouth_mask = torch.nn.functional.interpolate(mouth_mask, size=(self.neural_rendering_resolution), mode='bilinear', align_corners=False, antialias=True)
mouth_mask_sr = (mouth_mask_sr + torch.nn.functional.interpolate(mouth_mask, size=(self.img_resolution), mode='bilinear', align_corners=False, antialias=True)).clamp(max=1)
# mouth_mask_sr[:,:,:128,:] *= 0 # for visualization only (deprecated)
else:
mouth_mask = None
mouth_mask_sr = None
head_mask = torch.nn.functional.interpolate(head_mask, size=(neural_rendering_resolution), mode='bilinear', align_corners=False, antialias=True)
head_mask_sr = torch.nn.functional.interpolate(head_mask, size=(self.img_resolution), mode='bilinear', align_corners=False, antialias=True)
# Create triplanes by running StyleGAN backbone
# N, M, _ = ray_origins.shape
if use_cached_backbone and self._last_planes is not None:
planes = self._last_planes
dynamic_planes = self._last_dynamic_planes
else:
planes, last_featuremap = self.backbone.synthesis(face_ws, update_emas=update_emas, **synthesis_kwargs)
# Reshape output into three 32-channel planes
if not isinstance(planes, list):
planes = [planes]
# last_featuremap = [last_featuremap]
planes = [p.view(len(p), -1, 32, p.shape[-2], p.shape[-1]) for p in planes]
if self.dynamic_texture:
pass # deprecated
else:
dynamic_planes = None
if cache_backbone:
self._last_planes = planes
self._last_dynamic_planes = dynamic_planes
if self.has_background:
if forward_mode == 'train':
background = self.background(z_bg, c, **synthesis_kwargs)
else:
background, _ = self.background.synthesis(bg_ws, update_emas=update_emas, **synthesis_kwargs)
background = torch.sigmoid(background) # (-1,1) (N,3,H,W)
background = F.interpolate(background,size=(256, 256),mode='bilinear')
background_feature = F.interpolate(background,size=(self.img_resolution,self.img_resolution),mode='bilinear')
if background.shape[-1] != neural_rendering_resolution:
background = F.interpolate(background,size=(neural_rendering_resolution,neural_rendering_resolution),mode='bilinear')
# Create a batch of rays for volume rendering
output = {}
coarse_sample_points = coarse_triplane_features = None
if run_full:
ray_origins, ray_directions, _ = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution)
mouth_mask_flat = mouth_mask[:, 0].view(mouth_mask.shape[0], -1, 1) if neural_rendering_resolution==self.neural_rendering_resolution else mouth_mask_sr[:, 0].view(mouth_mask_sr.shape[0], -1, 1)
eye_mask_flat = eye_mask[:, 0].view(eye_mask.shape[0], -1, 1) if neural_rendering_resolution==self.neural_rendering_resolution else eye_mask_sr[:, 0].view(eye_mask_sr.shape[0], -1, 1)
# Perform volume rendering
if chunk is None:
feature_samples, depth_samples, all_depths, all_weights, T_bg, offset, dist_to_surface, densities_face_ineye, densities_face_inmouth,vts_mask, vts_mask_region, coarse_sample_points, coarse_triplane_features, eye_mask_sel, mouth_mask_sel \
= self.renderer((planes[0:1], planes)[neural_rendering_resolution>64], self.decoder, _deformer, ray_origins, ray_directions, self.rendering_kwargs, eye_mask=eye_mask_flat, mouth_mask=mouth_mask_flat, mouth_dynamic=self.mouth_dynamic, auto_fuse=(False, True)[neural_rendering_resolution>64],cam_z=cam_z) # channels last
if dense_eye: # only for batchsize=1
is_eye_region = (eye_mask_flat!=0).squeeze(0).squeeze(-1)
if torch.sum(is_eye_region.to(torch.float32)) == 0:
feature_samples_eye = 0
T_bg_eye = 0
else:
ray_origins_eye = ray_origins[:,is_eye_region]
ray_directions_eye = ray_directions[:,is_eye_region]
eye_mask_eye = eye_mask_flat[:,is_eye_region]
rendering_kwargs_eye = copy.deepcopy(self.rendering_kwargs)
rendering_kwargs_eye['depth_resolution'] = 128
rendering_kwargs_eye['depth_resolution_importance'] = 128
feature_samples_eye, depth_samples_eye, all_depths_eye, all_weights_eye, T_bg_eye, offset_eye, dist_to_surface_eye, densities_face_ineye_eye, densities_face_inmouth_eye,vts_mask_eye, vts_mask_region_eye, _, _, _, _ = self.renderer((planes[0:1], planes)[neural_rendering_resolution>64], self.decoder, _deformer, ray_origins_eye, ray_directions_eye, rendering_kwargs_eye, eye_mask=eye_mask_eye, mouth_mask=None, mouth_dynamic=self.mouth_dynamic, auto_fuse=(False, True)[neural_rendering_resolution>64]) # channels last
else:
feature_samples, depth_samples, all_depths, all_weights, T_bg, offset, dist_to_surface, densities_face_ineye, densities_face_inmouth, vts_mask, vts_mask_region = list(), list(), list(), list(), list(), list(), list(), list(), list(), list(), list()
for _ro, _rd, _em, _mm in zip(torch.split(ray_origins, chunk, dim=1), torch.split(ray_directions, chunk, dim=1), torch.split(eye_mask_flat, chunk, dim=1), torch.split(mouth_mask_flat, chunk, dim=1)):
_f, _d, _ad, _aw, _tbg, _off, _ds, _dfe, _dfm, _vm, _vmr = self.renderer((planes[0:1], planes)[neural_rendering_resolution>64], self.decoder, _deformer, _ro, _rd, self.rendering_kwargs, eye_mask=_em, mouth_mask=_mm, mouth_dynamic=self.mouth_dynamic, auto_fuse=(False, True)[neural_rendering_resolution>64],cam_z=cam_z) # channels last
feature_samples.append(_f)
depth_samples.append(_d)
all_depths.append(_ad)
all_weights.append(_aw)
T_bg.append(_tbg)
offset.append(_off)
dist_to_surface.append(_ds)
densities_face_ineye.append(_dfe)
densities_face_inmouth.append(_dfm)
vts_mask.append(_vm)
vts_mask_region.append(_vmr)
feature_samples = torch.cat(feature_samples, 1)
depth_samples = torch.cat(depth_samples, 1)
all_depths = torch.cat(all_depths, 1)
all_weights = torch.cat(all_weights, 1)
T_bg = torch.cat(T_bg, 1)
offset = torch.cat(offset, 1)
dist_to_surface = torch.cat(dist_to_surface, 1)
densities_face_ineye = torch.cat(densities_face_ineye, 1)
densities_face_inmouth = torch.cat(densities_face_inmouth, 1)
vts_mask = torch.cat(vts_mask, 1)
vts_mask_region = torch.cat(vts_mask_region, 1)
weights_samples = all_weights.sum(2)
if dense_eye:
feature_samples[:,is_eye_region] = feature_samples_eye
T_bg[:,is_eye_region] = T_bg_eye
# Reshape into 'raw' neural-rendered image
# H = W = self.neural_rendering_resolution
feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous()
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
# background
if feature_image.shape[-1]<=128:
T_bg = T_bg.permute(0, 2, 1).reshape(N, 1, H, W)
if self.has_background:
feature_image = feature_image + T_bg*background
else:
feature_image = feature_image + T_bg
feature_image = 2*feature_image - 1
rgb_image = feature_image[:, :3]
if self.superresolution is not None and rgb_image.shape[-1]<=128:
sr_image = self.superresolution(rgb_image, feature_image, ws, ws_super=ws_super, noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'})
else:
sr_image = rgb_image
else:
rgb_image = feature_image[:, :3]
if self.has_background:
background_sr = 2*background - 1
background_sr = self.superresolution(background_sr[:, :3], background_sr, ws, ws_super=ws_super, noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'})
background_sr = (background_sr + 1) * 0.5
T_bg = T_bg.permute(0, 2, 1).reshape(N, 1, H, W)
rgb_image = rgb_image + T_bg*background_sr
else:
T_bg = T_bg.permute(0, 2, 1).reshape(N, 1, H, W)
rgb_image = rgb_image + T_bg
rgb_image = 2*rgb_image - 1
sr_image = rgb_image
if self.has_patch_sr:
rgb_image_ = rgb_image
background_feature = torch.cat([background_sr,background_feature[:,3:]],dim=1)
feature_image_ = feature_image + T_bg * background_feature
feature_image_ = 2*feature_image_ - 1
sr_rgb_image = self.patch_sr(rgb_image_[:, :3], feature_image_, torch.ones_like(ws))
output.update({'image_raw_sr': sr_rgb_image})
output.update({'image': rgb_image, 'image_feature':feature_image,'image_sr':sr_image, 'background':2*background-1, 'image_depth': depth_image, 'interval':all_depths.squeeze(-1), 'all_weights':all_weights.squeeze(-1), \
'T_bg': T_bg, 'offset':offset, 'dist_to_surface':dist_to_surface, 'eye_mask': eye_mask, 'head_mask': head_mask, 'mouth_mask': mouth_mask, 'mouth_mask_sr': mouth_mask_sr+eye_mask_sr, \
'densities_face_ineye': densities_face_ineye, 'densities_face_inmouth': densities_face_inmouth, 'seg': (1 - T_bg)*2 - 1, 'vts_mask':vts_mask, 'vts_mask_region':vts_mask_region, 'dynamic_planes':dynamic_planes, 'uv': uv,\
'coarse_sample_points':coarse_sample_points, 'coarse_triplane_features':coarse_triplane_features, 'eye_mask_sel':eye_mask_sel, 'mouth_mask_sel':mouth_mask_sel})
if patch_scale<1:
patch_ray_origins, patch_ray_directions, patch_info = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution, patch_scale=patch_scale, mask=[eye_mask_sr+mouth_mask_sr, head_mask_sr], masked_sampling=self.masked_sampling)
if self.has_background:
background_sr = 2*background - 1
background_sr = self.superresolution(background_sr[:, :3], background_sr, ws, ws_super=ws_super, noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'})
background_sr = (background_sr+1)*0.5
patch_background_sr = []
patch_background_feature = []
patch_eye_mask = []
if uv is not None:
patch_uv = []
if run_full:
patch_sr_image = []
patch_rgb_image = []
sr_image_ = sr_image.detach()
rgb_image_ = rgb_image.detach()
rgb_image_ = torch.nn.functional.interpolate(rgb_image_, size=(sr_image_.shape[-1]),
mode='bilinear', align_corners=False, antialias=True)
if self.mouth_part:
patch_mouth_mask = []
for i in range(len(patch_info)):
top, left = patch_info[i]
patch_eye_mask.append(eye_mask_sr[i:i+1, :, top:top+neural_rendering_resolution, left:left+neural_rendering_resolution])
if uv is not None:
patch_uv.append(uv[i:i+1, :, top:top+neural_rendering_resolution, left:left+neural_rendering_resolution])
if run_full:
patch_sr_image.append(sr_image_[i:i+1, :, top:top+neural_rendering_resolution, left:left+neural_rendering_resolution])
patch_rgb_image.append(rgb_image_[i:i+1, :, top:top+neural_rendering_resolution, left:left+neural_rendering_resolution])
if self.mouth_part:
patch_mouth_mask.append(mouth_mask_sr[i:i+1, :, top:top+neural_rendering_resolution, left:left+neural_rendering_resolution])
if self.has_background:
patch_background_sr.append(background_sr[i:i+1, :, top:top+neural_rendering_resolution, left:left+neural_rendering_resolution])
patch_background_feature.append(background_feature[i:i+1, :, top:top+neural_rendering_resolution, left:left+neural_rendering_resolution])
patch_eye_mask = torch.cat(patch_eye_mask, 0)
if uv is not None:
patch_uv = torch.cat(patch_uv, 0)
else:
patch_uv = None
if run_full:
patch_sr_image = torch.cat(patch_sr_image, 0)
patch_rgb_image = torch.cat(patch_rgb_image, 0)
output.update({'patch_image': patch_sr_image, 'patch_image_gr': patch_rgb_image})
if self.mouth_part:
patch_mouth_mask = torch.cat(patch_mouth_mask, 0)
if self.has_background:
patch_background_sr = torch.cat(patch_background_sr, 0)
patch_background_feature = torch.cat(patch_background_feature, 0)
# Perform volume rendering
patch_mouth_mask_flat = patch_mouth_mask[:, 0].view(mouth_mask.shape[0], -1, 1)
patch_eye_mask_flat = patch_eye_mask[:, 0].view(eye_mask.shape[0], -1, 1)
patch_feature_samples, patch_depth_samples, patch_all_depths, patch_all_weights, patch_T_bg, patch_offset, patch_dist_to_surface, patch_densities_face_ineye, patch_densities_face_inmouth, patch_vts_mask, patch_vts_mask_region, _, _, _, _ = self.renderer(planes, self.decoder, _deformer, patch_ray_origins, patch_ray_directions, self.rendering_kwargs, eye_mask=patch_eye_mask_flat, mouth_mask=patch_mouth_mask_flat, mouth_dynamic=self.mouth_dynamic, auto_fuse=True,cam_z=cam_z) # channels last
# Reshape into 'raw' neural-rendered image
patch_feature_image = patch_feature_samples.permute(0, 2, 1).reshape(N, patch_feature_samples.shape[-1], H, W).contiguous()
patch_depth_image = patch_depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
patch_rgb_image = patch_feature_image[:, :3]
if self.has_background:
patch_T_bg = patch_T_bg.permute(0, 2, 1).reshape(N, 1, H, W)
patch_rgb_image = patch_rgb_image + patch_T_bg * patch_background_sr
patch_rgb_image = 2*patch_rgb_image-1
if self.has_patch_sr:
patch_rgb_image_ = patch_rgb_image.clone().detach()
patch_background_feature = torch.cat([patch_background_sr,patch_background_feature[:,3:]],dim=1)
patch_feature_image_ = patch_feature_image.clone().detach() + patch_T_bg.clone().detach() * patch_background_feature.clone().detach()
patch_feature_image_ = 2*patch_feature_image_ - 1
sr_patch_rgb_image = self.patch_sr(patch_rgb_image_[:, :3], patch_feature_image_, torch.ones_like(ws))
output.update({'patch_image_raw_sr': sr_patch_rgb_image})
output.update({'patch_image_raw': patch_rgb_image, 'patch_seg': (1 - patch_T_bg)*2 - 1, 'patch_T_bg': patch_T_bg, 'patch_uv': patch_uv, 'patch_mouth_mask': patch_mouth_mask, 'patch_all_depths': patch_all_depths.squeeze(-1), 'patch_all_weights': patch_all_weights.squeeze(-1)})
return output
def sample(self, coordinates, directions, shape_params,exp_params,pose_params,eye_pose_params, z, c, use_deform=True, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
# Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes.
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
planes = self.backbone.synthesis(ws, update_emas=update_emas, **synthesis_kwargs)
# planes = torch.tanh(planes)
planes = planes.view(len(planes), -1, 32, planes.shape[-2], planes.shape[-1])
# target space to canonical space deformation
if use_deform:
_deformer = self._deformer(shape_params,exp_params,pose_params,eye_pose_params)
out_deform = _deformer(coordinates)
coordinates = out_deform['canonical']
offset = out_deform['offset']
else:
coordinates = coordinates
offset = torch.zeros_like(coordinates)
out = self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs)
out['canonical'] = coordinates
out['offset'] = offset
# out['offset'] = torch.zeros_like(coordinates)
return out
def sample_mixed(self, coordinates, directions, shape_params,exp_params,pose_params,eye_pose_params, ws, use_deform=True, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
# Same as sample, but expects latent vectors 'ws' instead of Gaussian noise 'z'
planes, last_featuremap = self.backbone.synthesis(ws, update_emas = update_emas, **synthesis_kwargs)
# planes = planes.view(len(planes), -1, 32, planes.shape[-2], planes.shape[-1])
if not isinstance(planes, list):
planes = [planes]
last_featuremap = [last_featuremap]
planes = [p.view(len(p), -1, 32, p.shape[-2], p.shape[-1]) for p in planes]
dynamic_planes = None
# target space to canonical space deformation
if use_deform:
_deformer = self._deformer(shape_params,exp_params,pose_params,eye_pose_params)
out_deform = _deformer(coordinates, mouth=self.mouth_part)
coordinates_eye = out_deform['canonical_eye']
coordinates_face = out_deform['canonical_face']
coordinates_mouth = out_deform['canonical_mouth']
if out_deform['dynamic_mask'] is not None:
dynamic_mask = out_deform['dynamic_mask'] * (1-out_deform['inside_bbox_eye'][..., None])
else:
dynamic_mask = out_deform['dynamic_mask']
offset = torch.zeros_like(coordinates_eye)
else:
coordinates = coordinates
offset = torch.zeros_like(coordinates)
dynamic_mask = None
plane_eye = [p[:, :3] for p in planes]
if dynamic_mask is not None:
if self.mouth_part and self.mouth_dynamic:
plane_mouth = [torch.cat([p[:, :3],p[:, -3:]],dim=2) for p in planes]
else:
plane_mouth = [p[:, :3] for p in planes]
plane_face = [torch.cat([p[:, 3:6],p[:, -3:]],dim=2) for p in planes]
else:
if self.mouth_part:
plane_mouth = [p[:, :3] for p in planes]
plane_face = [p[:, 3:6] for p in planes]
out_eye = self.renderer.run_model(plane_eye, self.decoder, coordinates_eye, directions, self.rendering_kwargs,dynamic_mask=None)
out_face = self.renderer.run_model(plane_face, self.decoder, coordinates_face, directions, self.rendering_kwargs,dynamic_mask=dynamic_mask)
out_eye['canonical'] = coordinates_eye
out_face['canonical'] = coordinates_face
out_eye['offset'] = offset
out_face['offset'] = offset
if self.mouth_part:
out_mouth = self.renderer.run_model(plane_mouth, self.decoder, coordinates_mouth, directions, self.rendering_kwargs,dynamic_mask=(None, dynamic_mask)[self.mouth_dynamic])
out_mouth['canonical'] = coordinates_mouth
out_mouth['offset'] = offset
return out_eye, out_face, out_mouth
else:
return out_eye, out_face
def forward(self, shape_params,exp_params,pose_params,eye_pose_params, z, z_bg, c, c_compose, truncation_psi=1, truncation_cutoff=None, neural_rendering_resolution=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, patch_scale=1.0, **synthesis_kwargs):
# Render a batch of generated images.
_deformer = self._deformer(shape_params,exp_params,pose_params,eye_pose_params)
c_compose_condition = c_compose.clone()
if self.flame_condition:
c_compose_condition = torch.cat([c_compose_condition,shape_params],dim=-1)
ws = self.mapping(z, c_compose_condition, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
# Render correspondence map as condition to the discriminator
render_out = self.deformer.renderer(shape_params, exp_params, pose_params, eye_pose_params, c, half_size=int(self.img_resolution/2))
uv = render_out[0]
landmarks = render_out[-1]
img = self.synthesis(ws, z_bg, c, _deformer=_deformer, update_emas=update_emas, neural_rendering_resolution=neural_rendering_resolution, cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone, smpl_param=(shape_params, exp_params, pose_params, eye_pose_params), patch_scale=patch_scale, **synthesis_kwargs)
img['uv'] = uv
img['landmarks'] = landmarks
return img
def zero_init(m):
with torch.no_grad():
nn.init.constant_(m.weight,0)
nn.init.constant_(m.bias,0)
@persistence.persistent_class
class OSGDecoder(torch.nn.Module):
def __init__(self, n_features, options):
super().__init__()
self.hidden_dim = 64
self.net = torch.nn.Sequential(
FullyConnectedLayer(n_features, self.hidden_dim, lr_multiplier=options['decoder_lr_mul']),
torch.nn.Softplus()
)
self.out_sigma = FullyConnectedLayer(self.hidden_dim, 1, lr_multiplier=options['decoder_lr_mul'])
self.out_rgb = FullyConnectedLayer(self.hidden_dim, options['decoder_output_dim'], lr_multiplier=options['decoder_lr_mul'])
self.out_sigma.apply(zero_init)
def forward(self, sampled_features, ray_directions):
# Aggregate features
sampled_features = sampled_features.mean(1)
x = sampled_features
N, M, C = x.shape
x = x.view(N*M, C)
x = self.net(x)
rgb = self.out_rgb(x)
sigma = self.out_sigma(x)
rgb = rgb.view(N, M, -1)
sigma = sigma.view(N, M, -1)
rgb = torch.sigmoid(rgb)*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF
return {'rgb': rgb, 'sigma': sigma}
|