File size: 9,897 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
# import sys
# sys.path.append('../../code_v1.0')

import torch
import numpy as np
from torch_utils import persistence
from recon.models.stylegan.networks_stylegan2 import MappingNetwork, SynthesisLayer
from torch_utils import misc
from training.volumetric_rendering.ray_sampler import RaySampler
from training.volumetric_rendering.math_utils import normalize_vecs
import dnnlib

# def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor:
#     """
#     Normalize vector lengths.
#     """
#     return vectors / (torch.norm(vectors, dim=-1, keepdim=True))

# class RaySampler(torch.nn.Module):
#     def __init__(self):
#         super().__init__()
#         self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None


#     def forward(self, cam2world_matrix, intrinsics, resolution):
#         """
#         Create batches of rays and return origins and directions.

#         cam2world_matrix: (N, 4, 4)
#         intrinsics: (N, 3, 3)
#         resolution: int

#         ray_origins: (N, M, 3)
#         ray_dirs: (N, M, 2)
#         """
#         N, M = cam2world_matrix.shape[0], resolution**2
#         cam_locs_world = cam2world_matrix[:, :3, 3]
#         fx = intrinsics[:, 0, 0]
#         fy = intrinsics[:, 1, 1]
#         cx = intrinsics[:, 0, 2]
#         cy = intrinsics[:, 1, 2]
#         sk = intrinsics[:, 0, 1]

#         # uv = torch.stack(torch.meshgrid(torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), indexing='ij')) * (1./resolution) + (0.5/resolution)
#         uv = torch.stack(torch.meshgrid(torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), indexing='ij')) + 0.5
#         uv = uv.flip(0).reshape(2, -1).transpose(1, 0)
#         uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1)

#         x_cam = uv[:, :, 0].view(N, -1)
#         y_cam = uv[:, :, 1].view(N, -1)
#         # z_cam = torch.ones((N, M), device=cam2world_matrix.device) # Original EG3D implementation, z points inward
#         z_cam = - torch.ones((N, M), device=cam2world_matrix.device) # Our camera space coordinate

#         x_lift = - (x_cam - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y_cam/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z_cam
#         y_lift = (y_cam - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z_cam

#         cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1)

#         world_rel_points = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3]

#         ray_dirs = world_rel_points - cam_locs_world[:, None, :]
#         ray_dirs = torch.nn.functional.normalize(ray_dirs, dim=2)

#         ray_origins = cam_locs_world.unsqueeze(1).repeat(1, ray_dirs.shape[1], 1)

#         return ray_origins, ray_dirs

def get_dist_from_origin(ray_origins,ray_dirs):
    ray_dirs = normalize_vecs(ray_dirs)
    dist = torch.sqrt(torch.sum(ray_origins**2,dim=-1)-torch.sum(ray_origins*ray_dirs,dim=-1)**2 + 1e-10)

    return dist

@torch.no_grad()
def get_intersections_with_sphere(ray_origins,ray_dirs,radius):
    dist = get_dist_from_origin(ray_origins,ray_dirs)
    valid_mask = (dist <= radius)

    intersections = torch.zeros_like(ray_dirs)
    intersections[valid_mask] = ray_origins[valid_mask] + (-torch.sum(ray_origins[valid_mask]*ray_dirs[valid_mask],dim=-1,keepdim=True) + \
    torch.sqrt(radius**2 + torch.sum(ray_origins[valid_mask]*ray_dirs[valid_mask],dim=-1,keepdim=True)**2 - torch.sum(ray_origins[valid_mask]**2,dim=-1,keepdim=True)))*ray_dirs[valid_mask]

    return intersections, valid_mask

@torch.no_grad()
def get_theta_phi_bg(ray_origins,ray_dirs,radius):
    intersections, valid_mask = get_intersections_with_sphere(ray_origins,ray_dirs,radius)
    phi = torch.zeros_like(intersections[...,0])
    theta = torch.zeros_like(intersections[...,0])

    phi[valid_mask] = torch.arcsin(torch.clamp(intersections[valid_mask][...,1]/radius,-1+1e-10,1-1e-10))

    radius_xz = torch.sqrt(intersections[valid_mask][...,0]**2+intersections[valid_mask][...,2]**2)
    theta_no_sign = torch.arccos(torch.clamp(torch.div(intersections[valid_mask][...,2],radius_xz),-1+1e-10,1-1e-10))
    theta[valid_mask] = torch.where(intersections[valid_mask][...,0]>torch.zeros_like(intersections[valid_mask][...,0]),theta_no_sign,2*np.pi-theta_no_sign)

    # normalizing to [-1,1]
    # theta = (theta-np.pi)/np.pi # times 2 because the theta can hardly exceed pi for frontal-facing scene
    theta = torch.sin(theta)
    phi = torch.sin(phi)

    return torch.stack([theta,phi],dim=-1), valid_mask

@persistence.persistent_class
class BGSynthesisNetwork(torch.nn.Module):
    def __init__(self,
        w_dim,                      # Intermediate latent (W) dimensionality.
        img_channels,               # Number of color channels.
        hidden_channels = 64,
        L               = 10,
        **block_kwargs,             # Arguments for SynthesisBlock.
    ):
        super().__init__()
        self.w_dim = w_dim
        self.img_channels = img_channels
        self.hidden_channels = hidden_channels
        self.L = L

        self.num_ws = 0
        for idx in range(5):
            in_channels = L*4 if idx == 0 else hidden_channels
            out_channels = hidden_channels if idx < 4 else img_channels
            activation = 'lrelu' if idx < 4 else 'sigmoid'
            layer = SynthesisLayer(in_channels, out_channels, w_dim=w_dim, resolution=64, kernel_size=1, use_noise=False, activation=activation, **block_kwargs)
            self.num_ws += 1
            setattr(self, f'b{idx}', layer)
        
    def positional_encoding(self, p, use_pos=False):

        p_transformed = torch.cat([torch.cat(
            [torch.sin((2 ** i) * np.pi * p),
            torch.cos((2 ** i) * np.pi * p)],
            dim=-1) for i in range(self.L)], dim=-1)
        if use_pos:
            p_transformed = torch.cat([p_transformed, p], -1)
        return p_transformed

    def forward(self, ws, x, update_emas, **block_kwargs):
        _ = update_emas
        layer_ws = []
        with torch.autograd.profiler.record_function('split_ws'):
            misc.assert_shape(ws, [None, self.num_ws, self.w_dim])
            ws = ws.to(torch.float32)
            w_idx = 0
            for idx in range(5):
                layer = getattr(self, f'b{idx}')
                layer_ws.append(ws[:,w_idx])
                w_idx += 1

        x = self.positional_encoding(x) # (N,M,L*4)
        x = x.permute(0,2,1).unsqueeze(-1) # (N,L*4,M,1)

        for idx, cur_ws in enumerate(layer_ws):
            layer = getattr(self, f'b{idx}')
            x = layer(x, cur_ws, **block_kwargs)

        return x

    def extra_repr(self):
        return ' '.join([
            f'w_dim={self.w_dim:d}, num_ws={self.num_ws:d},',
            f'hidden_channels={self.hidden_channels:d}, img_channels={self.img_channels:d},',
            f'L={self.L:d}'])


@persistence.persistent_class
class BGGenerator(torch.nn.Module):
    def __init__(self,
        z_dim,                      # Input latent (Z) dimensionality.
        c_dim,                      # Conditioning label (C) dimensionality.
        w_dim,                      # Intermediate latent (W) dimensionality.
        img_channels,               # Number of output color channels.
        mapping_kwargs      = {},   # Arguments for MappingNetwork.
        **synthesis_kwargs,         # Arguments for SynthesisNetwork.
    ):
        super().__init__()
        self.z_dim = z_dim
        self.c_dim = c_dim
        self.w_dim = w_dim
        self.img_channels = img_channels
        self.synthesis = BGSynthesisNetwork(w_dim=w_dim, img_channels=img_channels, **synthesis_kwargs)
        self.num_ws = self.synthesis.num_ws
        self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs)

    def forward(self, z, c, x, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
        ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
        img = self.synthesis(ws, x, update_emas=update_emas, **synthesis_kwargs)
        return img


if __name__=='__main__':
    import os
    os.environ['CUDA_VISIBLE_DEVICES'] = '0'
    from PIL import Image

    ray_sampler = RaySampler()

    camera_params = torch.eye(4).unsqueeze(0)
    camera_params[...,2,3] += 4.5
    intrinsics = torch.eye(3).unsqueeze(0)
    intrinsics[:,0,0] = 300
    intrinsics[:,1,1] = 300
    intrinsics[:,0,2] = 32
    intrinsics[:,1,2] = 32

    neural_rendering_resolution = 64

    ray_origins, ray_directions = ray_sampler(camera_params, intrinsics, neural_rendering_resolution)

    # print(ray_directions)

    angles, valid_mask = get_theta_phi_bg(ray_origins,ray_directions,radius=1.0)

    angles = angles.reshape(1,64,64,2)
    
    print(angles[0,31])
    print(angles.shape)
    print(valid_mask.shape)

    valid_mask = valid_mask.reshape(1,64,64).squeeze(0).numpy().astype(np.uint8)*255

    Image.fromarray(valid_mask, 'L').save('bg_mask.png')