Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,897 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
# import sys
# sys.path.append('../../code_v1.0')
import torch
import numpy as np
from torch_utils import persistence
from recon.models.stylegan.networks_stylegan2 import MappingNetwork, SynthesisLayer
from torch_utils import misc
from training.volumetric_rendering.ray_sampler import RaySampler
from training.volumetric_rendering.math_utils import normalize_vecs
import dnnlib
# def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor:
# """
# Normalize vector lengths.
# """
# return vectors / (torch.norm(vectors, dim=-1, keepdim=True))
# class RaySampler(torch.nn.Module):
# def __init__(self):
# super().__init__()
# self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None
# def forward(self, cam2world_matrix, intrinsics, resolution):
# """
# Create batches of rays and return origins and directions.
# cam2world_matrix: (N, 4, 4)
# intrinsics: (N, 3, 3)
# resolution: int
# ray_origins: (N, M, 3)
# ray_dirs: (N, M, 2)
# """
# N, M = cam2world_matrix.shape[0], resolution**2
# cam_locs_world = cam2world_matrix[:, :3, 3]
# fx = intrinsics[:, 0, 0]
# fy = intrinsics[:, 1, 1]
# cx = intrinsics[:, 0, 2]
# cy = intrinsics[:, 1, 2]
# sk = intrinsics[:, 0, 1]
# # uv = torch.stack(torch.meshgrid(torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), indexing='ij')) * (1./resolution) + (0.5/resolution)
# uv = torch.stack(torch.meshgrid(torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), indexing='ij')) + 0.5
# uv = uv.flip(0).reshape(2, -1).transpose(1, 0)
# uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1)
# x_cam = uv[:, :, 0].view(N, -1)
# y_cam = uv[:, :, 1].view(N, -1)
# # z_cam = torch.ones((N, M), device=cam2world_matrix.device) # Original EG3D implementation, z points inward
# z_cam = - torch.ones((N, M), device=cam2world_matrix.device) # Our camera space coordinate
# x_lift = - (x_cam - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y_cam/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z_cam
# y_lift = (y_cam - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z_cam
# cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1)
# world_rel_points = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3]
# ray_dirs = world_rel_points - cam_locs_world[:, None, :]
# ray_dirs = torch.nn.functional.normalize(ray_dirs, dim=2)
# ray_origins = cam_locs_world.unsqueeze(1).repeat(1, ray_dirs.shape[1], 1)
# return ray_origins, ray_dirs
def get_dist_from_origin(ray_origins,ray_dirs):
ray_dirs = normalize_vecs(ray_dirs)
dist = torch.sqrt(torch.sum(ray_origins**2,dim=-1)-torch.sum(ray_origins*ray_dirs,dim=-1)**2 + 1e-10)
return dist
@torch.no_grad()
def get_intersections_with_sphere(ray_origins,ray_dirs,radius):
dist = get_dist_from_origin(ray_origins,ray_dirs)
valid_mask = (dist <= radius)
intersections = torch.zeros_like(ray_dirs)
intersections[valid_mask] = ray_origins[valid_mask] + (-torch.sum(ray_origins[valid_mask]*ray_dirs[valid_mask],dim=-1,keepdim=True) + \
torch.sqrt(radius**2 + torch.sum(ray_origins[valid_mask]*ray_dirs[valid_mask],dim=-1,keepdim=True)**2 - torch.sum(ray_origins[valid_mask]**2,dim=-1,keepdim=True)))*ray_dirs[valid_mask]
return intersections, valid_mask
@torch.no_grad()
def get_theta_phi_bg(ray_origins,ray_dirs,radius):
intersections, valid_mask = get_intersections_with_sphere(ray_origins,ray_dirs,radius)
phi = torch.zeros_like(intersections[...,0])
theta = torch.zeros_like(intersections[...,0])
phi[valid_mask] = torch.arcsin(torch.clamp(intersections[valid_mask][...,1]/radius,-1+1e-10,1-1e-10))
radius_xz = torch.sqrt(intersections[valid_mask][...,0]**2+intersections[valid_mask][...,2]**2)
theta_no_sign = torch.arccos(torch.clamp(torch.div(intersections[valid_mask][...,2],radius_xz),-1+1e-10,1-1e-10))
theta[valid_mask] = torch.where(intersections[valid_mask][...,0]>torch.zeros_like(intersections[valid_mask][...,0]),theta_no_sign,2*np.pi-theta_no_sign)
# normalizing to [-1,1]
# theta = (theta-np.pi)/np.pi # times 2 because the theta can hardly exceed pi for frontal-facing scene
theta = torch.sin(theta)
phi = torch.sin(phi)
return torch.stack([theta,phi],dim=-1), valid_mask
@persistence.persistent_class
class BGSynthesisNetwork(torch.nn.Module):
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality.
img_channels, # Number of color channels.
hidden_channels = 64,
L = 10,
**block_kwargs, # Arguments for SynthesisBlock.
):
super().__init__()
self.w_dim = w_dim
self.img_channels = img_channels
self.hidden_channels = hidden_channels
self.L = L
self.num_ws = 0
for idx in range(5):
in_channels = L*4 if idx == 0 else hidden_channels
out_channels = hidden_channels if idx < 4 else img_channels
activation = 'lrelu' if idx < 4 else 'sigmoid'
layer = SynthesisLayer(in_channels, out_channels, w_dim=w_dim, resolution=64, kernel_size=1, use_noise=False, activation=activation, **block_kwargs)
self.num_ws += 1
setattr(self, f'b{idx}', layer)
def positional_encoding(self, p, use_pos=False):
p_transformed = torch.cat([torch.cat(
[torch.sin((2 ** i) * np.pi * p),
torch.cos((2 ** i) * np.pi * p)],
dim=-1) for i in range(self.L)], dim=-1)
if use_pos:
p_transformed = torch.cat([p_transformed, p], -1)
return p_transformed
def forward(self, ws, x, update_emas, **block_kwargs):
_ = update_emas
layer_ws = []
with torch.autograd.profiler.record_function('split_ws'):
misc.assert_shape(ws, [None, self.num_ws, self.w_dim])
ws = ws.to(torch.float32)
w_idx = 0
for idx in range(5):
layer = getattr(self, f'b{idx}')
layer_ws.append(ws[:,w_idx])
w_idx += 1
x = self.positional_encoding(x) # (N,M,L*4)
x = x.permute(0,2,1).unsqueeze(-1) # (N,L*4,M,1)
for idx, cur_ws in enumerate(layer_ws):
layer = getattr(self, f'b{idx}')
x = layer(x, cur_ws, **block_kwargs)
return x
def extra_repr(self):
return ' '.join([
f'w_dim={self.w_dim:d}, num_ws={self.num_ws:d},',
f'hidden_channels={self.hidden_channels:d}, img_channels={self.img_channels:d},',
f'L={self.L:d}'])
@persistence.persistent_class
class BGGenerator(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality.
c_dim, # Conditioning label (C) dimensionality.
w_dim, # Intermediate latent (W) dimensionality.
img_channels, # Number of output color channels.
mapping_kwargs = {}, # Arguments for MappingNetwork.
**synthesis_kwargs, # Arguments for SynthesisNetwork.
):
super().__init__()
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.img_channels = img_channels
self.synthesis = BGSynthesisNetwork(w_dim=w_dim, img_channels=img_channels, **synthesis_kwargs)
self.num_ws = self.synthesis.num_ws
self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs)
def forward(self, z, c, x, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
img = self.synthesis(ws, x, update_emas=update_emas, **synthesis_kwargs)
return img
if __name__=='__main__':
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from PIL import Image
ray_sampler = RaySampler()
camera_params = torch.eye(4).unsqueeze(0)
camera_params[...,2,3] += 4.5
intrinsics = torch.eye(3).unsqueeze(0)
intrinsics[:,0,0] = 300
intrinsics[:,1,1] = 300
intrinsics[:,0,2] = 32
intrinsics[:,1,2] = 32
neural_rendering_resolution = 64
ray_origins, ray_directions = ray_sampler(camera_params, intrinsics, neural_rendering_resolution)
# print(ray_directions)
angles, valid_mask = get_theta_phi_bg(ray_origins,ray_directions,radius=1.0)
angles = angles.reshape(1,64,64,2)
print(angles[0,31])
print(angles.shape)
print(valid_mask.shape)
valid_mask = valid_mask.reshape(1,64,64).squeeze(0).numpy().astype(np.uint8)*255
Image.fromarray(valid_mask, 'L').save('bg_mask.png') |