import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain def get_pdf_text(pdf_docs): text="" for pdf in pdf_docs: pdf_reader= PdfReader(pdf) for page in pdf_reader.pages: text+= page.extract_text() return text def get_text_chunks(text): text_splitter= CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) chunks= text.splitter.split_text(text) return chunks def get_vectorstores(text_chunks): embeddings= OpenAIEmbeddings() # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") vectorstore= FAISS.from_text(texts=text_chunks, embedding=embeddings) def get_conversation_chain(vectorstore): llm = ChatOpenAI() # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def main(): st.set_page_config(page_title="Chat", page_icon=":books:") if "conversation" not in st.session_state: st.session_state.conversation = None st.header("Chat with multiple PDFs :books:") st.text_input("Ask a question about your documents:") with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader("Upload your docs here", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): # get pdf text, contents raw_text = get_pdf_text(pdf_docs) # st.write(raw_text) # get text chunks text_chunks=get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain # conversation=get_conversation_chain(vectorstore) st.session_state.conversation = get_conversation_chain(vectorstore) if __name__ == "__main__": main() # Instructor embeddings # InstructorEmbedding==1.0.1 # sentence-transformers==2.2.2