File size: 17,121 Bytes
1ac12bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde9314
1ac12bc
 
 
fde9314
1ac12bc
fde9314
 
1ac12bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde9314
 
1ac12bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fde9314
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import uuid
import time
import re
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
import modelscope_studio.components.antd as antd
import modelscope_studio.components.antdx as antdx
import modelscope_studio.components.base as ms
import modelscope_studio.components.pro as pro
from config import DEFAULT_LOCALE, DEFAULT_THEME, get_text, user_config, bot_config, welcome_config
from ui_components.logo import Logo
from ui_components.settings_header import SettingsHeader

# Loading the tokenizer and model from Hugging Face's model hub

tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")

# Using CUDA for an optimal experience

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)

# Defining a custom stopping criteria class for the model's text generation

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [2]  # IDs of tokens where the generation should stop.
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False

# Function to generate model predictions with streaming

def generate_response(user_input, history):
    stop = StopOnTokens()
    messages = "</s>".join([
        "</s>".join([
            "\n<|user|>:" + item["content"] if item["role"] == "user"
            else "\n<|assistant|>:" + item["content"]
            for item in history
        ])
    ])
    messages += f"\n<|user|>:{user_input}\n<|assistant|>:"
    model_inputs = tokenizer([messages], return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        **model_inputs,
        streamer=streamer,
        max_new_tokens=1024,
        do_sample=True,
        top_p=0.95,
        top_k=50,
        temperature=0.7,
        num_beams=1,
        stopping_criteria=StoppingCriteriaList([stop])
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()  # Start generation in a separate thread.
    partial_message = ""
    for new_token in streamer:
        partial_message += new_token
        if '</s>' in partial_message:
            break
    return partial_message

# Define the system prompt for seeding the model's context

SYSTEM_PROMPT = (
    "I am LogicLink, Version 5, A state-of-the-art AI chatbot created and engineered by "
    "Kratu Gautam"
    "I am here to assist you with any queries. How can I help you today?"
)

class Gradio_Events:
    _generating = False

    @staticmethod
    def new_chat(state_value):
        # This is CRITICAL - we DO NOT clean up old conversation
        # Instead, we leave it in the state to be accessed later

        # Create a fresh conversation
        new_id = str(uuid.uuid4())
        state_value["conversation_id"] = new_id

        # Add the new conversation to the list with a default name
        state_value["conversations"].append({
            "label": "New Chat",
            "key": new_id
        })

        # Seed it with system prompt
        state_value["conversation_contexts"][new_id] = {
            "history": [{
                "role": "system",
                "content": SYSTEM_PROMPT,
                "key": str(uuid.uuid4()),
                "avatar": None
            }]
        }

        # Return updates
        return (
            gr.update(items=state_value["conversations"]),
            gr.update(value=state_value["conversation_contexts"][new_id]["history"]),
            gr.update(value=state_value),
            gr.update(value="")  # empties input
        )

    @staticmethod
    def add_message(input_value, state_value):
        input_update = gr.update(value="")

        # If input is empty, just return
        if not input_value.strip():
            conversation = state_value["conversation_contexts"].get(state_value["conversation_id"], {"history": []})
            chatbot_update = gr.update(value=conversation["history"])
            state_update = gr.update(value=state_value)
            return input_update, chatbot_update, state_update

        # If there's no active conversation, initialize a new one
        if not state_value["conversation_id"]:
            random_id = str(uuid.uuid4())
            state_value["conversation_id"] = random_id
            state_value["conversation_contexts"][random_id] = {"history": [{
                "role": "system",
                "content": SYSTEM_PROMPT,
                "key": str(uuid.uuid4()),
                "avatar": None
            }]}

            # Set the chat name to the first message from user
            chat_name = input_value[:20] + ("..." if len(input_value) > 20 else "")
            state_value["conversations"].append({
                "label": chat_name,
                "key": random_id
            })
        else:
            # Get current conversation history
            current_id = state_value["conversation_id"]
            history = state_value["conversation_contexts"][current_id]["history"]

            # If this is the first user message (after system message), update the label
            user_messages = [msg for msg in history if msg["role"] == "user"]
            if len(user_messages) == 0:
                # This is the first user message - update the chat name
                chat_name = input_value[:20] + ("..." if len(input_value) > 20 else "")
                for i, conv in enumerate(state_value["conversations"]):
                    if conv["key"] == current_id:
                        state_value["conversations"][i]["label"] = chat_name
                        break

        # Add the message to history
        history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
        history.append({
            "role": "user",
            "content": input_value,
            "key": str(uuid.uuid4()),
            "avatar": None
        })

        chatbot_update = gr.update(value=history)
        return input_update, chatbot_update, gr.update(value=state_value)

    @staticmethod
    def submit(state_value):
        if Gradio_Events._generating:
            history = state_value["conversation_contexts"].get(state_value["conversation_id"], {"history": []})["history"]
            return (
                gr.update(value=history),
                gr.update(value=state_value),
                gr.update(value="Generation in progress, please wait...")
            )

        Gradio_Events._generating = True

        # Make sure we have a valid conversation ID
        if not state_value["conversation_id"]:
            Gradio_Events._generating = False
            return (
                gr.update(value=[]),
                gr.update(value=state_value),
                gr.update(value="No active conversation")
            )

        history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]

        # Assuming the last message is the latest user input
        user_input = history[-1]["content"] if (history and history[-1]["role"] == "user") else ""
        if not user_input:
            Gradio_Events._generating = False
            return (
                gr.update(value=history),
                gr.update(value=state_value),
                gr.update(value="No user input provided")
            )

        # Generate the response from the model
        history, response = Gradio_Events.logiclink_chat(user_input, history)
        state_value["conversation_contexts"][state_value["conversation_id"]]["history"] = history
        Gradio_Events._generating = False
        return (
            gr.update(value=history),
            gr.update(value=state_value),
            gr.update(value=response)
        )

    @staticmethod
    def logiclink_chat(user_input, history):
        if not user_input:
            return history, "No input provided"
        try:
            start = time.time()
            response = generate_response(user_input, history)
            elapsed = time.time() - start
            # Clean and format the response before appending it
            cleaned_response = re.sub(r'\*\(\d+\.\d+s\)\*', '', response).strip()
            response_with_time = f"{cleaned_response}\n\n*({elapsed:.2f}s)*"
            history.append({
                "role": "assistant",
                "content": response_with_time,
                "key": str(uuid.uuid4()),
                "avatar": None
            })
            return history, response_with_time
        except Exception as e:
            error_msg = (
                f"Generation failed: {str(e)}. "
                "Possible causes: insufficient memory, model incompatibility, or input issues."
            )
            history.append({
                "role": "assistant",
                "content": error_msg,
                "key": str(uuid.uuid4()),
                "avatar": None
            })
            return history, error_msg

    @staticmethod
    def clear_history(state_value):
        if state_value["conversation_id"]:
            # Only clear messages after system prompt
            current_history = state_value["conversation_contexts"][state_value["conversation_id"]]["history"]
            if len(current_history) > 0 and current_history[0]["role"] == "system":
                system_message = current_history[0]
                state_value["conversation_contexts"][state_value["conversation_id"]]["history"] = [system_message]
            else:
                state_value["conversation_contexts"][state_value["conversation_id"]]["history"] = []

            # Return the cleared history
            return (
                gr.update(value=state_value["conversation_contexts"][state_value["conversation_id"]]["history"]),
                gr.update(value=state_value),
                gr.update(value="")
            )
        return (
            gr.update(value=[]),
            gr.update(value=state_value),
            gr.update(value="")
        )

    @staticmethod
    def delete_conversation(state_value, conversation_key):
        # Keep a copy of the conversations before removal
        new_conversations = [conv for conv in state_value["conversations"] if conv["key"] != conversation_key]

        # Remove the conversation from the list
        state_value["conversations"] = new_conversations

        # Delete the conversation context
        if conversation_key in state_value["conversation_contexts"]:
            del state_value["conversation_contexts"][conversation_key]

        # If we're deleting the active conversation
        if state_value["conversation_id"] == conversation_key:
            state_value["conversation_id"] = ""
            return gr.update(items=new_conversations), gr.update(value=[]), gr.update(value=state_value)

        # If deleting another conversation, keep the current one displayed
        return (
            gr.update(items=new_conversations),
            gr.update(value=state_value["conversation_contexts"].get(
                state_value["conversation_id"], {"history": []}
            )["history"]),
            gr.update(value=state_value)
        )

# (The remainder of your Gradio UI code remains largely unchanged.)

css = """
:root {
--color-red: #ff4444;
--color-blue: #1e88e5;
--color-black: #000000;
--color-dark-gray: #121212;
}
.gradio-container { background: var(--color-black) !important; color: white !important; }
.gr-textbox textarea, .ms-gr-ant-input-textarea { background: var(--color-dark-gray) !important; border: 2px solid var(--color-blue) !important; color: white !important; }
.gr-chatbot { background: var(--color-dark-gray) !important; border: 2px solid var(--color-red) !important; }
.gr-textbox.output-textbox { background: var(--color-dark-gray) !important; border: 2px solid var(--color-red) !important; color: white !important; margin-bottom: 10px; }
.gr-chatbot .user { background: var(--color-blue) !important; border-color: var(--color-blue) !important; }
.gr-chatbot .bot { background: var(--color-dark-gray) !important; border: 1px solid var(--color-red) !important; }
.gr-button { background: var(--color-blue) !important; border-color: var(--color-blue) !important; }
.gr-chatbot .tool { background: var(--color-dark-gray) !important; border: 1px solid var(--color-red) !important; }
"""

with gr.Blocks(css=css, fill_width=True, title="LogicLinkV5") as demo:
    state = gr.State({
        "conversation_contexts": {},
        "conversations": [],
        "conversation_id": "",
    })
    with ms.Application(), antdx.XProvider(theme=DEFAULT_THEME, locale=DEFAULT_LOCALE), ms.AutoLoading():
        with antd.Row(gutter=[20, 20], wrap=False, elem_id="chatbot"):
            # Left Column
            with antd.Col(md=dict(flex="0 0 260px", span=24, order=0), span=0, order=1):
                with ms.Div(elem_classes="chatbot-conversations"):
                    with antd.Flex(vertical=True, gap="small", elem_style=dict(height="100%")):
                        Logo()
                        with antd.Button(color="primary", variant="filled", block=True, elem_classes="new-chat-btn") as new_chat_btn:
                            ms.Text(get_text("New Chat", "新建对话"))
                            with ms.Slot("icon"):
                                antd.Icon("PlusOutlined")
                        with antdx.Conversations(elem_classes="chatbot-conversations-list") as conversations:
                            with ms.Slot('menu.items'):
                                with antd.Menu.Item(label="Delete", key="delete", danger=True) as conversation_delete_menu_item:
                                    with ms.Slot("icon"):
                                        antd.Icon("DeleteOutlined")
            # Right Column
            with antd.Col(flex=1, elem_style=dict(height="100%")):
                with antd.Flex(vertical=True, gap="small", elem_classes="chatbot-chat"):
                    chatbot = pro.Chatbot(elem_classes="chatbot-chat-messages", height=600,
                                         welcome_config=welcome_config(), user_config=user_config(),
                                         bot_config=bot_config())
                    output_textbox = gr.Textbox(label="LatestOutputTextbox", lines=1,
                                              elem_classes="output-textbox", interactive=True)
                    with antdx.Suggestion(items=[]):
                        with ms.Slot("children"):
                            with antdx.Sender(placeholder="Type your message...", elem_classes="chat-input") as input:
                                with ms.Slot("prefix"):
                                    with antd.Flex(gap=4):
                                        with antd.Button(type="text", elem_classes="clear-btn") as clear_btn:
                                            with ms.Slot("icon"):
                                                antd.Icon("ClearOutlined")
    # Event Handlers
    input.submit(fn=Gradio_Events.add_message, inputs=[input, state],
                outputs=[input, chatbot, state]).then(
        fn=Gradio_Events.submit, inputs=[state],
        outputs=[chatbot, state, output_textbox]
    )
    new_chat_btn.click(fn=Gradio_Events.new_chat,
                     inputs=[state],
                     outputs=[conversations, chatbot, state, input],
                     queue=False)
    clear_btn.click(fn=Gradio_Events.clear_history, inputs=[state],
                   outputs=[chatbot, state, output_textbox])
    conversations.menu_click(
        fn=lambda state_value, e: (
            # If there's no payload, skip
            gr.skip() if (e is None or not isinstance(e, dict) or 'key' not in e._data['payload'][0] or 'menu_key' not in e._data['payload'][1])
            else (
                # Extract keys
                (lambda conv_key, action_key: (
                    # If "delete", remove that convo
                    Gradio_Events.delete_conversation(state_value, conv_key)
                    if action_key == "delete"
                    # If other action, do nothing
                    else (
                        gr.update(items=state_value["conversations"]),
                        gr.update(value=state_value["conversation_contexts"]
                        .get(state_value["conversation_id"], {"history": []})
                        ["history"]),
                        gr.update(value=state_value)
                    )
                ))(
                    e._data['payload'][0]['key'],
                    e._data['payload'][1]['key']
                )
            )
        ),
        inputs=[state],
        outputs=[conversations, chatbot, state],
        queue=False
    )

demo.queue().launch(share=True, debug=True)