MrOplus
init
d7881fa
# Copyright (c) 2025 All rights reserved.
import os
import torch
import gradio as gr
import huggingface_hub
from huggingface_hub import snapshot_download
from PIL import Image, ImageDraw, ImageFont
# Import the base pipeline from diffusers
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from transformers import CLIPTextModel, CLIPTokenizer
# Define default parameters
DEFAULT_SEED = 42
DEFAULT_STEPS = 30
DEFAULT_GUIDANCE_SCALE = 7.5
RED_BG_COLOR = "#ffcccc" # Light red background
# Initialize the model
def download_model():
# Download the model (using a simple SD model as example)
snapshot_download(repo_id='runwayml/stable-diffusion-v1-5', local_dir='./models/stable-diffusion', local_dir_use_symlinks=False)
def init_pipeline():
# Initialize a simple text-to-image pipeline
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
"./models/stable-diffusion",
torch_dtype=torch.float16,
safety_checker=None
)
pipeline = pipeline.to("cuda")
return pipeline
# Generate image function
def generate_image(prompt, seed, num_steps, guidance_scale):
try:
# Make sure we have a valid seed
if seed == 0:
seed = torch.seed() & 0xFFFFFFFF
# Set up generator for reproducibility
generator = torch.Generator("cuda").manual_seed(seed)
# Generate the image
image = pipeline(
prompt=prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
generator=generator
).images[0]
# Add watermark
image = add_safety_watermark(image)
except Exception as e:
print(f"Error generating image: {e}")
return gr.update()
return gr.update(value=image, label=f"Generated Image, seed = {seed}")
# Add watermark to image
def add_safety_watermark(image, text='AI Generated'):
width, height = image.size
draw = ImageDraw.Draw(image)
# Set font size based on image height
font_size = int(height * 0.028)
font = ImageFont.load_default()
# Calculate text position
text_width = len(text) * font_size * 0.6 # Approximate width
x = width - text_width - 10
y = height - font_size - 20
# Add shadow and text
draw.text((x+2, y+2), text, fill="black")
draw.text((x, y), text, fill="white")
return image
# Create example function
def generate_example(prompt, seed):
return generate_image(prompt, seed, DEFAULT_STEPS, DEFAULT_GUIDANCE_SCALE)
# Sample examples
sample_list = [
['A majestic mountain landscape with snow peaks and pine trees', 123],
['A futuristic city with flying cars and tall skyscrapers', 456],
['A serene beach scene with clear blue waters', 789],
]
# Create the Gradio interface
with gr.Blocks(css=f".gradio-container {{ background-color: {RED_BG_COLOR} !important; }}") as demo:
gr.HTML("""
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
<h1 style="font-size: 2rem; font-weight: 700;">Simple Text to Image Generator</h1>
<h2 style="font-size: 1.2rem; font-weight: 300; margin-bottom: 1rem;">Convert your text descriptions into images</h2>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
# Input components
ui_prompt_text = gr.Textbox(label="Text Prompt", value="A beautiful landscape with mountains and trees")
ui_seed = gr.Number(label="Seed (0 for random)", value=DEFAULT_SEED)
ui_steps = gr.Slider(minimum=10, maximum=50, value=DEFAULT_STEPS, step=1, label="Number of Steps")
ui_guidance_scale = gr.Slider(minimum=1.0, maximum=15.0, value=DEFAULT_GUIDANCE_SCALE, step=0.5, label="Guidance Scale")
ui_btn_generate = gr.Button("Generate Image")
with gr.Column(scale=3):
# Output components
image_output = gr.Image(label="Generated Image", interactive=False, height=512)
gr.Examples(
sample_list,
inputs=[ui_prompt_text, ui_seed],
outputs=[image_output],
fn=generate_example,
cache_examples=True
)
ui_btn_generate.click(
generate_image,
inputs=[ui_prompt_text, ui_seed, ui_steps, ui_guidance_scale],
outputs=[image_output]
)
gr.Markdown(
"""
### How to Use:
1. Enter a detailed text description of the image you want to create
2. Adjust the parameters if needed (or leave as default)
3. Click "Generate Image" and wait for the result
### Tips:
- Detailed prompts work better than short ones
- Try different seeds for different variations
- Higher guidance scale values make the image follow the prompt more closely
"""
)
# Initialize and launch
print("Downloading models...")
download_model()
print("Initializing pipeline...")
pipeline = init_pipeline()
print("Launching Gradio interface...")
demo.launch()