KomalDahiya commited on
Commit
c9e6271
·
verified ·
1 Parent(s): f3b9503

requirements.txt

Browse files

streamlit
transformers
torch

Files changed (1) hide show
  1. app.py +37 -0
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ st.set_page_config(page_title="LLM Text Summarizer", layout="centered")
5
+ st.title("LLM-Powered Text Summarizer")
6
+ st.markdown("This app summarizes long texts using a Hugging Face transformer model (`facebook/bart-large-cnn`).")
7
+
8
+ @st.cache_resource
9
+ def load_model():
10
+ return pipeline("summarization", model="facebook/bart-large-cnn")
11
+
12
+ summarizer = load_model()
13
+
14
+ text = st.text_area("Enter text to summarize", height=300)
15
+
16
+ if st.button("Summarize"):
17
+ if len(text.strip()) == 0:
18
+ st.warning("Please enter some text first.")
19
+ else:
20
+ word_count = len(text.split())
21
+
22
+ if word_count > 1300:
23
+ max_tokens = 1300
24
+ elif word_count > 300:
25
+ max_tokens = 350
26
+ else:
27
+ max_tokens = 100
28
+
29
+ with st.spinner("Generating summary..."):
30
+ summary = summarizer(
31
+ text,
32
+ max_length=max_tokens,
33
+ min_length=int(max_tokens * 0.5),
34
+ do_sample=False
35
+ )
36
+ st.subheader("Summary:")
37
+ st.success(summary[0]['summary_text'])