Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,27 +5,25 @@ from textblob import TextBlob
|
|
5 |
import joblib
|
6 |
import matplotlib.pyplot as plt
|
7 |
from datetime import datetime
|
|
|
8 |
|
9 |
# Function to load stock data using yfinance
|
10 |
@st.cache_data(ttl=86400)
|
11 |
def load_stock_data(tickers, start_date, end_date):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
merged_data = pd.concat(all_data, ignore_index=True)
|
24 |
return merged_data
|
25 |
|
26 |
-
|
27 |
tickers = ['TSLA', 'MSFT', 'PG', 'META', 'AMZN', 'GOOG', 'AMD', 'AAPL', 'NFLX', 'TSM',
|
28 |
-
|
29 |
start_date = (datetime.today() - pd.DateOffset(years=1)).strftime('%Y-%m-%d')
|
30 |
end_date = datetime.today().strftime('%Y-%m-%d')
|
31 |
|
@@ -51,7 +49,7 @@ daily_sentiment = tweets_data.groupby(['Date', 'Stock Name']).mean(numeric_only=
|
|
51 |
daily_sentiment['Date'] = pd.to_datetime(daily_sentiment['Date'])
|
52 |
|
53 |
# Merge stock data with sentiment data
|
54 |
-
merged_data = pd.merge(
|
55 |
|
56 |
# Fill missing sentiment values with 0 (neutral sentiment)
|
57 |
merged_data['Sentiment'] = merged_data['Sentiment'].fillna(0)
|
@@ -110,7 +108,7 @@ st.write(latest_data_df)
|
|
110 |
st.write("Use the inputs above to predict the next days close prices of the stock.")
|
111 |
if st.button("Predict"):
|
112 |
predictions = []
|
113 |
-
latest_date = datetime.
|
114 |
|
115 |
for i in range(days_to_predict):
|
116 |
X_future = pd.DataFrame({
|
@@ -139,22 +137,20 @@ if st.button("Predict"):
|
|
139 |
})
|
140 |
|
141 |
st.subheader("Predicted Prices")
|
142 |
-
# st.write(prediction_df)
|
143 |
st.dataframe(prediction_df)
|
|
|
144 |
# Plot predictions using Plotly
|
145 |
-
|
146 |
-
fig = px.line(prediction_df, x='Date', y='Predicted Close Price',
|
147 |
-
markers=True, title=f"{selected_stock} Predicted Close Prices")
|
148 |
st.plotly_chart(fig, use_container_width=True)
|
149 |
|
150 |
# ----------------------------------------
|
151 |
# Enhanced Visualizations
|
152 |
-
st.header("
|
153 |
-
stock_history =
|
154 |
|
155 |
# Date filter slider
|
156 |
-
min_date = pd.to_datetime(
|
157 |
-
max_date = pd.to_datetime(
|
158 |
|
159 |
date_range = st.slider(
|
160 |
"Select Date Range for Visualizations",
|
@@ -166,30 +162,29 @@ if st.button("Predict"):
|
|
166 |
|
167 |
filtered_data = stock_history[(stock_history['Date'] >= date_range[0]) & (stock_history['Date'] <= date_range[1])]
|
168 |
|
169 |
-
with st.expander("
|
170 |
fig1 = px.line(filtered_data, x='Date', y=['Close', 'Sentiment'],
|
171 |
labels={'value': 'Price / Sentiment', 'variable': 'Metric'},
|
172 |
title=f"{selected_stock} - Close Price & Sentiment")
|
173 |
st.plotly_chart(fig1, use_container_width=True)
|
174 |
|
175 |
-
with st.expander("
|
176 |
fig2 = px.line(filtered_data, x='Date', y='Volatility',
|
177 |
title=f"{selected_stock} - 7-Day Rolling Volatility")
|
178 |
st.plotly_chart(fig2, use_container_width=True)
|
179 |
|
180 |
-
with st.expander("
|
181 |
-
fig3 = px.line(filtered_data, x='Date',
|
182 |
-
y=['MA7', 'MA14'],
|
183 |
labels={'value': 'Price', 'variable': 'Moving Average'},
|
184 |
title=f"{selected_stock} - Moving Averages")
|
185 |
st.plotly_chart(fig3, use_container_width=True)
|
186 |
|
187 |
-
with st.expander("
|
188 |
fig4 = px.line(filtered_data, x='Date', y='Daily_Change',
|
189 |
title=f"{selected_stock} - Daily Price Change")
|
190 |
st.plotly_chart(fig4, use_container_width=True)
|
191 |
|
192 |
-
with st.expander("
|
193 |
fig5 = px.histogram(filtered_data, x='Sentiment', nbins=30,
|
194 |
title=f"{selected_stock} - Sentiment Score Distribution")
|
195 |
st.plotly_chart(fig5, use_container_width=True)
|
|
|
5 |
import joblib
|
6 |
import matplotlib.pyplot as plt
|
7 |
from datetime import datetime
|
8 |
+
import plotly.express as px
|
9 |
|
10 |
# Function to load stock data using yfinance
|
11 |
@st.cache_data(ttl=86400)
|
12 |
def load_stock_data(tickers, start_date, end_date):
|
13 |
+
with st.spinner('Downloading stock data...'):
|
14 |
+
data = yf.download(tickers, start=start_date, end=end_date, group_by='ticker', auto_adjust=True)
|
15 |
+
|
16 |
+
all_data = []
|
17 |
+
for ticker in tickers:
|
18 |
+
df = data[ticker].copy().reset_index()
|
19 |
+
df['Stock Name'] = ticker
|
20 |
+
all_data.append(df)
|
21 |
+
|
22 |
+
merged_data = pd.concat(all_data, ignore_index=True)
|
|
|
|
|
23 |
return merged_data
|
24 |
|
|
|
25 |
tickers = ['TSLA', 'MSFT', 'PG', 'META', 'AMZN', 'GOOG', 'AMD', 'AAPL', 'NFLX', 'TSM',
|
26 |
+
'KO', 'F', 'COST', 'DIS', 'VZ', 'CRM', 'INTC', 'BA', 'BX', 'NOC', 'PYPL', 'ENPH', 'NIO', 'ZS', 'XPEV']
|
27 |
start_date = (datetime.today() - pd.DateOffset(years=1)).strftime('%Y-%m-%d')
|
28 |
end_date = datetime.today().strftime('%Y-%m-%d')
|
29 |
|
|
|
49 |
daily_sentiment['Date'] = pd.to_datetime(daily_sentiment['Date'])
|
50 |
|
51 |
# Merge stock data with sentiment data
|
52 |
+
merged_data = pd.merge(stock_data, daily_sentiment, how='left', on=['Date', 'Stock Name'])
|
53 |
|
54 |
# Fill missing sentiment values with 0 (neutral sentiment)
|
55 |
merged_data['Sentiment'] = merged_data['Sentiment'].fillna(0)
|
|
|
108 |
st.write("Use the inputs above to predict the next days close prices of the stock.")
|
109 |
if st.button("Predict"):
|
110 |
predictions = []
|
111 |
+
latest_date = datetime.now()
|
112 |
|
113 |
for i in range(days_to_predict):
|
114 |
X_future = pd.DataFrame({
|
|
|
137 |
})
|
138 |
|
139 |
st.subheader("Predicted Prices")
|
|
|
140 |
st.dataframe(prediction_df)
|
141 |
+
|
142 |
# Plot predictions using Plotly
|
143 |
+
fig = px.line(prediction_df, x='Date', y='Predicted Close Price', markers=True, title=f"{selected_stock} Predicted Close Prices")
|
|
|
|
|
144 |
st.plotly_chart(fig, use_container_width=True)
|
145 |
|
146 |
# ----------------------------------------
|
147 |
# Enhanced Visualizations
|
148 |
+
st.header("Enhanced Stock Analysis")
|
149 |
+
stock_history = merged_data[merged_data['Stock Name'] == selected_stock]
|
150 |
|
151 |
# Date filter slider
|
152 |
+
min_date = pd.to_datetime(merged_data['Date'].min()).date()
|
153 |
+
max_date = pd.to_datetime(merged_data['Date'].max()).date()
|
154 |
|
155 |
date_range = st.slider(
|
156 |
"Select Date Range for Visualizations",
|
|
|
162 |
|
163 |
filtered_data = stock_history[(stock_history['Date'] >= date_range[0]) & (stock_history['Date'] <= date_range[1])]
|
164 |
|
165 |
+
with st.expander("Price vs Sentiment Trend"):
|
166 |
fig1 = px.line(filtered_data, x='Date', y=['Close', 'Sentiment'],
|
167 |
labels={'value': 'Price / Sentiment', 'variable': 'Metric'},
|
168 |
title=f"{selected_stock} - Close Price & Sentiment")
|
169 |
st.plotly_chart(fig1, use_container_width=True)
|
170 |
|
171 |
+
with st.expander("Volatility Over Time"):
|
172 |
fig2 = px.line(filtered_data, x='Date', y='Volatility',
|
173 |
title=f"{selected_stock} - 7-Day Rolling Volatility")
|
174 |
st.plotly_chart(fig2, use_container_width=True)
|
175 |
|
176 |
+
with st.expander("Moving Averages (MA7 vs MA14)"):
|
177 |
+
fig3 = px.line(filtered_data, x='Date', y=['MA7', 'MA14'],
|
|
|
178 |
labels={'value': 'Price', 'variable': 'Moving Average'},
|
179 |
title=f"{selected_stock} - Moving Averages")
|
180 |
st.plotly_chart(fig3, use_container_width=True)
|
181 |
|
182 |
+
with st.expander("Daily Price Change"):
|
183 |
fig4 = px.line(filtered_data, x='Date', y='Daily_Change',
|
184 |
title=f"{selected_stock} - Daily Price Change")
|
185 |
st.plotly_chart(fig4, use_container_width=True)
|
186 |
|
187 |
+
with st.expander("Sentiment Distribution"):
|
188 |
fig5 = px.histogram(filtered_data, x='Sentiment', nbins=30,
|
189 |
title=f"{selected_stock} - Sentiment Score Distribution")
|
190 |
st.plotly_chart(fig5, use_container_width=True)
|