Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import yfinance as yf | |
from textblob import TextBlob | |
import joblib | |
import matplotlib.pyplot as plt | |
from datetime import datetime | |
import plotly.express as px | |
# Function to load stock data using yfinance/ this is going to refresh after 1 day | |
def load_stock_data(tickers, start_date, end_date): | |
with st.spinner('Downloading stock data...'): | |
data = yf.download(tickers, start=start_date, end=end_date, group_by='ticker', auto_adjust=True) | |
all_data = [] | |
for ticker in tickers: | |
df = data[ticker].copy().reset_index() | |
df['Stock Name'] = ticker | |
all_data.append(df) | |
merged_data = pd.concat(all_data, ignore_index=True) | |
return merged_data | |
tickers = ['TSLA', 'MSFT', 'PG', 'META', 'AMZN', 'GOOG', 'AMD', 'AAPL', 'NFLX', 'TSM', | |
'KO', 'F', 'COST', 'DIS', 'VZ', 'CRM', 'INTC', 'BA', 'BX', 'NOC', 'PYPL', 'ENPH', 'NIO', 'ZS', 'XPEV'] | |
start_date = (datetime.today() - pd.DateOffset(years=1)).strftime('%Y-%m-%d') | |
end_date = datetime.today().strftime('%Y-%m-%d') | |
# Cache stock data for 1 day using st.cache_data | |
def load_and_cache_stock_data(): | |
return load_stock_data(tickers, start_date, end_date) | |
# Initialize stock_data once at app startup | |
if "stock_data" not in st.session_state: | |
st.session_state["stock_data"] = load_and_cache_stock_data() | |
stock_data = st.session_state["stock_data"] | |
# Perform sentiment analysis on tweets (assuming you still have your tweets data) | |
tweets_data = pd.read_csv('data/stock_tweets.csv') | |
# Convert the Date columns to datetime | |
tweets_data['Date'] = pd.to_datetime(tweets_data['Date']).dt.date | |
# Perform sentiment analysis on tweets | |
def get_sentiment(tweet): | |
analysis = TextBlob(tweet) | |
return analysis.sentiment.polarity | |
tweets_data['Sentiment'] = tweets_data['Tweet'].apply(get_sentiment) | |
# Aggregate sentiment by date and stock | |
daily_sentiment = tweets_data.groupby(['Date', 'Stock Name']).mean(numeric_only=True).reset_index() | |
# Convert the Date column in daily_sentiment to datetime64[ns] | |
daily_sentiment['Date'] = pd.to_datetime(daily_sentiment['Date']) | |
# Merge stock data with sentiment data | |
merged_data = pd.merge(stock_data, daily_sentiment, how='left', on=['Date', 'Stock Name']) | |
# Fill missing sentiment values with 0 (neutral sentiment) | |
merged_data['Sentiment'] = merged_data['Sentiment'].fillna(0) | |
# Sort the data by date | |
merged_data = merged_data.sort_values(by='Date') | |
# Create lagged features | |
merged_data['Prev_Close'] = merged_data.groupby('Stock Name')['Close'].shift(1) | |
merged_data['Prev_Sentiment'] = merged_data.groupby('Stock Name')['Sentiment'].shift(1) | |
# Create moving averages | |
merged_data['MA7'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=7).mean()) | |
merged_data['MA14'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=14).mean()) | |
# Create daily price changes | |
merged_data['Daily_Change'] = merged_data['Close'] - merged_data['Prev_Close'] | |
# Create volatility | |
merged_data['Volatility'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=7).std()) | |
# Drop rows with missing values | |
merged_data.dropna(inplace=True) | |
# Load the best model | |
model_filename = 'model/best_model.pkl' | |
model = joblib.load(model_filename) | |
# Streamlit application layout | |
st.title("Stock Price Prediction Using Sentiment Analysis") | |
# User input for stock data | |
st.header("Input Stock Data") | |
stock_names = merged_data['Stock Name'].unique() | |
selected_stock = st.selectbox("Select Stock Name", stock_names) | |
days_to_predict = st.number_input("Number of Days to Predict", min_value=1, max_value=30, value=10) | |
# Get the latest data for the selected stock | |
latest_data = merged_data[merged_data['Stock Name'] == selected_stock].iloc[-1] | |
prev_close = latest_data['Close'] | |
prev_sentiment = latest_data['Sentiment'] | |
ma7 = latest_data['MA7'] | |
ma14 = latest_data['MA14'] | |
daily_change = latest_data['Daily_Change'] | |
volatility = latest_data['Volatility'] | |
# Display the latest stock data in a table | |
latest_data_df = pd.DataFrame({ | |
'Metric': ['Previous Close Price', 'Previous Sentiment', '7-day Moving Average', '14-day Moving Average', 'Daily Change', 'Volatility'], | |
'Value': [prev_close, prev_sentiment, ma7, ma14, daily_change, volatility] | |
}) | |
st.write("Latest Stock Data:") | |
st.write(latest_data_df) | |
st.write("Use the inputs above to predict the next days close prices of the stock.") | |
if st.button("Predict"): | |
predictions = [] | |
latest_date = datetime.now() | |
for i in range(days_to_predict): | |
X_future = pd.DataFrame({ | |
'Prev_Close': [prev_close], | |
'Prev_Sentiment': [prev_sentiment], | |
'MA7': [ma7], | |
'MA14': [ma14], | |
'Daily_Change': [daily_change], | |
'Volatility': [volatility] | |
}) | |
next_day_prediction = model.predict(X_future)[0] | |
predictions.append(next_day_prediction) | |
# Update features for next prediction | |
prev_close = next_day_prediction | |
ma7 = (ma7 * 6 + next_day_prediction) / 7 # Simplified rolling calculation | |
ma14 = (ma14 * 13 + next_day_prediction) / 14 # Simplified rolling calculation | |
daily_change = next_day_prediction - prev_close | |
# Prepare prediction data for display | |
prediction_dates = pd.date_range(start=latest_date + pd.Timedelta(days=1), periods=days_to_predict) | |
prediction_df = pd.DataFrame({ | |
'Date': prediction_dates, | |
'Predicted Close Price': predictions | |
}) | |
st.subheader("Predicted Prices") | |
st.dataframe(prediction_df) | |
# Plot predictions using Plotly | |
fig = px.line(prediction_df, x='Date', y='Predicted Close Price', markers=True, title=f"{selected_stock} Predicted Close Prices") | |
st.plotly_chart(fig, use_container_width=True) | |
# ---------------------------------------- | |
# Enhanced Visualizations | |
st.header("Enhanced Stock Analysis") | |
stock_history = merged_data[merged_data['Stock Name'] == selected_stock] | |
# Date filter slider | |
min_date = pd.to_datetime(merged_data['Date'].min()).date() | |
max_date = pd.to_datetime(merged_data['Date'].max()).date() | |
date_range = st.slider( | |
"Select Date Range for Visualizations", | |
min_value=min_date, | |
max_value=max_date, | |
value=(min_date, max_date), | |
format="YYYY-MM-DD" | |
) | |
filtered_data = stock_history[(stock_history['Date'] >= pd.to_datetime(date_range[0])) & | |
(stock_history['Date'] <= pd.to_datetime(date_range[1]))] | |
with st.expander("Price vs Sentiment Trend"): | |
fig1 = px.line(filtered_data, x='Date', y=['Close', 'Sentiment'], | |
labels={'value': 'Price / Sentiment', 'variable': 'Metric'}, | |
title=f"{selected_stock} - Close Price & Sentiment") | |
st.plotly_chart(fig1, use_container_width=True) | |
with st.expander("Volatility Over Time"): | |
fig2 = px.line(filtered_data, x='Date', y='Volatility', | |
title=f"{selected_stock} - 7-Day Rolling Volatility") | |
st.plotly_chart(fig2, use_container_width=True) | |
with st.expander("Moving Averages (MA7 vs MA14)"): | |
fig3 = px.line(filtered_data, x='Date', y=['MA7', 'MA14'], | |
labels={'value': 'Price', 'variable': 'Moving Average'}, | |
title=f"{selected_stock} - Moving Averages") | |
st.plotly_chart(fig3, use_container_width=True) | |
with st.expander("Daily Price Change"): | |
fig4 = px.line(filtered_data, x='Date', y='Daily_Change', | |
title=f"{selected_stock} - Daily Price Change") | |
st.plotly_chart(fig4, use_container_width=True) | |
with st.expander("Sentiment Distribution"): | |
fig5 = px.histogram(filtered_data, x='Sentiment', nbins=30, | |
title=f"{selected_stock} - Sentiment Score Distribution") | |
st.plotly_chart(fig5, use_container_width=True) | |