Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,552 Bytes
40462a0 7aafe2f c82ffd4 21e68e9 40462a0 cac40c5 65e5cab caec759 cac40c5 7aafe2f cac40c5 7aafe2f cac40c5 2aa1224 40462a0 cac40c5 7aafe2f cac40c5 56b40fc 6934cc4 cac40c5 56b40fc cac40c5 6934cc4 8c0ff20 cac40c5 92ae8b4 cac40c5 7aafe2f cac40c5 7aafe2f cac40c5 7aafe2f cac40c5 7aafe2f ffe402c a140f0e 7aafe2f cac40c5 7aafe2f 43cc46d cac40c5 43cc46d 2aa1224 43cc46d 627bc27 43cc46d cac40c5 43cc46d 6934cc4 7aafe2f f1c2277 7aafe2f 43cc46d f1c2277 43cc46d a9c173a 0a437ba a9c173a 43cc46d 6934cc4 f1c2277 43cc46d f1c2277 3bad26c 43cc46d 6934cc4 7aafe2f 43cc46d a9c173a 43cc46d 6934cc4 f1c2277 43cc46d 8effdde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
import time
from diffusers import DiffusionPipeline, AutoencoderTiny
from custom_pipeline import FluxWithCFGPipeline
# --- Torch Optimizations ---
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True # Enable cuDNN benchmark for potentially faster convolutions
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048 # Keep a reasonable limit to prevent OOMs
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1 # FLUX Schnell is designed for few steps
MIN_INFERENCE_STEPS = 1
MAX_INFERENCE_STEPS = 8 # Allow slightly more steps for potential quality boost
ENHANCE_STEPS = 2 # Fixed steps for the enhance button
# --- Device and Model Setup ---
dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxWithCFGPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
pipe.to(device)
# --- Inference Function ---
@spaces.GPU
def generate_image(prompt: str, seed: int = 42, width: int = DEFAULT_WIDTH, height: int = DEFAULT_HEIGHT, randomize_seed: bool = False, num_inference_steps: int = DEFAULT_INFERENCE_STEPS, is_enhance: bool = False):
"""Generates an image using the FLUX pipeline with error handling."""
if pipe is None:
raise gr.Error("Diffusion pipeline failed to load. Cannot generate images.")
if not prompt or prompt.strip() == "":
gr.Warning("Prompt is empty. Please enter a description.")
return None, seed, "Error: Empty prompt"
start_time = time.time()
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Clamp dimensions to avoid excessive memory usage
width = min(width, MAX_IMAGE_SIZE)
height = min(height, MAX_IMAGE_SIZE)
# Use fixed steps for enhance button, otherwise use slider value
steps_to_use = ENHANCE_STEPS if is_enhance else num_inference_steps
# Clamp steps
steps_to_use = max(MIN_INFERENCE_STEPS, min(steps_to_use, MAX_INFERENCE_STEPS))
try:
# Ensure generator is on the correct device
generator = torch.Generator(device=device).manual_seed(int(float(seed)))
# Use inference_mode for efficiency
with torch.inference_mode():
# Generate the image (assuming pipe returns list/tuple with image first)
# Modify pipe call based on its actual signature if needed
result_img = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=steps_to_use,
generator=generator,
output_type="pil", # Ensure PIL output for Gradio Image component
return_dict=False # Assuming the custom pipeline supports this for direct output
)[0][0] # Assuming the output structure is [[img]]
latency = time.time() - start_time
latency_str = f"Latency: {latency:.2f} seconds (Steps: {steps_to_use})"
return result_img, seed, latency_str
except torch.cuda.OutOfMemoryError as e:
# Clear cache and suggest reducing size/steps
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise gr.Error("GPU ran out of memory. Try reducing the image width/height or the number of inference steps.")
except Exception as e:
# Clear cache just in case
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise gr.Error(f"An error occurred during generation: {e}")
# --- Example Prompts ---
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cute white cat holding a sign that says hello world",
"an anime illustration of Steve Jobs",
"Create image of Modern house in minecraft style",
"photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair",
"Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.",
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
"High-resolution photorealistic render of a sleek, futuristic motorcycle parked on a neon-lit street at night, rain reflecting the lights.",
"Watercolor painting of a cozy bookstore interior with overflowing shelves and a cat sleeping in a sunbeam.",
]
# --- Gradio UI ---
with gr.Blocks() as demo:
with gr.Column(elem_id="app-container"):
gr.Markdown("# 🎨 Realtime FLUX Image Generator")
gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.")
gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>")
with gr.Row():
with gr.Column(scale=2.5):
result = gr.Image(label="Generated Image", show_label=False, interactive=False)
with gr.Column(scale=1):
prompt = gr.Text(
label="Prompt",
placeholder="Describe the image you want to generate...",
lines=3,
show_label=False,
container=False,
)
generateBtn = gr.Button("🖼️ Generate Image")
enhanceBtn = gr.Button("🚀 Enhance Image")
with gr.Column("Advanced Options"):
with gr.Row():
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False)
latency = gr.Text(label="Latency")
with gr.Row():
seed = gr.Number(label="Seed", value=42)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=MIN_INFERENCE_STEPS, maximum=MAX_INFERENCE_STEPS, step=1, value=DEFAULT_INFERENCE_STEPS)
with gr.Row():
gr.Markdown("### 🌟 Inspiration Gallery")
with gr.Row():
gr.Examples(
examples=examples,
fn=generate_image,
inputs=[prompt],
outputs=[result, seed, latency],
cache_examples=True,
cache_mode="eager"
)
enhanceBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height],
outputs=[result, seed, latency],
show_progress="full"
)
generateBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="full",
api_name="RealtimeFlux",
)
def update_ui(realtime_enabled):
return {
prompt: gr.update(interactive=True),
generateBtn: gr.update(visible=not realtime_enabled)
}
def realtime_generation(*args):
if args[0]: # If realtime is enabled
return next(generate_image(*args[1:]))
realtime.change(
fn=update_ui,
inputs=[realtime],
outputs=[prompt, generateBtn]
)
prompt.submit(
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="full"
)
for component in [prompt, width, height, num_inference_steps]:
component.input(
fn=realtime_generation,
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="hidden",
trigger_mode="always_last"
)
# Launch the app
demo.launch() |