File size: 8,552 Bytes
40462a0
7aafe2f
 
 
 
 
c82ffd4
21e68e9
40462a0
cac40c5
65e5cab
 
caec759
cac40c5
7aafe2f
cac40c5
7aafe2f
 
cac40c5
 
 
2aa1224
40462a0
cac40c5
7aafe2f
cac40c5
 
56b40fc
6934cc4
cac40c5
56b40fc
cac40c5
 
6934cc4
8c0ff20
cac40c5
92ae8b4
cac40c5
 
 
 
 
 
 
 
 
7aafe2f
 
cac40c5
 
 
 
 
 
 
 
 
7aafe2f
cac40c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aafe2f
 
cac40c5
7aafe2f
 
ffe402c
a140f0e
 
 
 
7aafe2f
cac40c5
 
7aafe2f
 
 
43cc46d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cac40c5
43cc46d
 
 
 
 
 
 
 
 
 
 
 
 
2aa1224
43cc46d
 
 
 
 
 
 
 
 
627bc27
 
43cc46d
cac40c5
43cc46d
 
 
 
6934cc4
7aafe2f
 
f1c2277
7aafe2f
43cc46d
 
 
 
f1c2277
 
43cc46d
 
 
 
 
 
a9c173a
0a437ba
 
a9c173a
43cc46d
 
 
6934cc4
f1c2277
43cc46d
f1c2277
3bad26c
43cc46d
 
6934cc4
7aafe2f
 
43cc46d
 
a9c173a
43cc46d
 
 
6934cc4
f1c2277
 
43cc46d
8effdde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
import numpy as np
import random
import spaces
import torch
import time
from diffusers import DiffusionPipeline, AutoencoderTiny
from custom_pipeline import FluxWithCFGPipeline

# --- Torch Optimizations ---
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True # Enable cuDNN benchmark for potentially faster convolutions

# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048 # Keep a reasonable limit to prevent OOMs
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1 # FLUX Schnell is designed for few steps
MIN_INFERENCE_STEPS = 1
MAX_INFERENCE_STEPS = 8 # Allow slightly more steps for potential quality boost
ENHANCE_STEPS = 2 # Fixed steps for the enhance button

# --- Device and Model Setup ---
dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = FluxWithCFGPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)

pipe.to(device)

# --- Inference Function ---
@spaces.GPU
def generate_image(prompt: str, seed: int = 42, width: int = DEFAULT_WIDTH, height: int = DEFAULT_HEIGHT, randomize_seed: bool = False, num_inference_steps: int = DEFAULT_INFERENCE_STEPS, is_enhance: bool = False):
    """Generates an image using the FLUX pipeline with error handling."""

    if pipe is None:
        raise gr.Error("Diffusion pipeline failed to load. Cannot generate images.")
        
    if not prompt or prompt.strip() == "":
         gr.Warning("Prompt is empty. Please enter a description.")
         return None, seed, "Error: Empty prompt"

    start_time = time.time()
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Clamp dimensions to avoid excessive memory usage
    width = min(width, MAX_IMAGE_SIZE)
    height = min(height, MAX_IMAGE_SIZE)
    
    # Use fixed steps for enhance button, otherwise use slider value
    steps_to_use = ENHANCE_STEPS if is_enhance else num_inference_steps
    # Clamp steps
    steps_to_use = max(MIN_INFERENCE_STEPS, min(steps_to_use, MAX_INFERENCE_STEPS))

    try:
        # Ensure generator is on the correct device
        generator = torch.Generator(device=device).manual_seed(int(float(seed)))

        # Use inference_mode for efficiency
        with torch.inference_mode():
            # Generate the image (assuming pipe returns list/tuple with image first)
            # Modify pipe call based on its actual signature if needed
            result_img = pipe(
                prompt=prompt,
                width=width,
                height=height,
                num_inference_steps=steps_to_use,
                generator=generator,
                output_type="pil", # Ensure PIL output for Gradio Image component
                return_dict=False # Assuming the custom pipeline supports this for direct output
            )[0][0] # Assuming the output structure is [[img]]

        latency = time.time() - start_time
        latency_str = f"Latency: {latency:.2f} seconds (Steps: {steps_to_use})"
        return result_img, seed, latency_str

    except torch.cuda.OutOfMemoryError as e:
        # Clear cache and suggest reducing size/steps
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        raise gr.Error("GPU ran out of memory. Try reducing the image width/height or the number of inference steps.")
        
    except Exception as e:
        # Clear cache just in case
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        raise gr.Error(f"An error occurred during generation: {e}")


# --- Example Prompts ---
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cute white cat holding a sign that says hello world",
    "an anime illustration of Steve Jobs",
    "Create image of Modern house in minecraft style",
    "photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair",
    "Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.",
    "Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
    "High-resolution photorealistic render of a sleek, futuristic motorcycle parked on a neon-lit street at night, rain reflecting the lights.",
    "Watercolor painting of a cozy bookstore interior with overflowing shelves and a cat sleeping in a sunbeam.",
]

# --- Gradio UI ---
with gr.Blocks() as demo:
    with gr.Column(elem_id="app-container"):
        gr.Markdown("# 🎨 Realtime FLUX Image Generator")
        gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.")
        gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>")

        with gr.Row():
            with gr.Column(scale=2.5):
                result = gr.Image(label="Generated Image", show_label=False, interactive=False)
            with gr.Column(scale=1):
                prompt = gr.Text(
                    label="Prompt",
                    placeholder="Describe the image you want to generate...",
                    lines=3,
                    show_label=False,
                    container=False,
                )
                generateBtn = gr.Button("🖼️ Generate Image")
                enhanceBtn = gr.Button("🚀 Enhance Image")

                with gr.Column("Advanced Options"):
                    with gr.Row():
                        realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False)
                        latency = gr.Text(label="Latency")
                    with gr.Row():
                        seed = gr.Number(label="Seed", value=42)
                        randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                    with gr.Row():
                        width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
                        height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
                        num_inference_steps = gr.Slider(label="Inference Steps", minimum=MIN_INFERENCE_STEPS, maximum=MAX_INFERENCE_STEPS, step=1, value=DEFAULT_INFERENCE_STEPS)

        with gr.Row():
            gr.Markdown("### 🌟 Inspiration Gallery")
        with gr.Row():
            gr.Examples(
                examples=examples,
                fn=generate_image,
                inputs=[prompt],
                outputs=[result, seed, latency],
                cache_examples=True,
                cache_mode="eager"
            )

    enhanceBtn.click(
        fn=generate_image,
        inputs=[prompt, seed, width, height],
        outputs=[result, seed, latency],
        show_progress="full"
    )

    generateBtn.click(
        fn=generate_image,
        inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
        outputs=[result, seed, latency],
        show_progress="full",
        api_name="RealtimeFlux",
    )

    def update_ui(realtime_enabled):
        return {
            prompt: gr.update(interactive=True),
            generateBtn: gr.update(visible=not realtime_enabled)
        }

    def realtime_generation(*args):
        if args[0]:  # If realtime is enabled
            return next(generate_image(*args[1:]))

    realtime.change(
        fn=update_ui,
        inputs=[realtime],
        outputs=[prompt, generateBtn]
    )

    prompt.submit(
        fn=generate_image,
        inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
        outputs=[result, seed, latency],
        show_progress="full"
    )

    for component in [prompt, width, height, num_inference_steps]:
        component.input(
            fn=realtime_generation,
            inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps],
            outputs=[result, seed, latency],
            show_progress="hidden",
            trigger_mode="always_last"
        )

# Launch the app
demo.launch()