Qwen-VL / app.py
KingNish's picture
Update app.py
d680493 verified
# Standard library imports
import os
from datetime import datetime
import subprocess
import time
import uuid
import io
from threading import Thread
# Third-party imports
import numpy as np
import torch
from PIL import Image
import accelerate
import gradio as gr
import spaces
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoTokenizer,
AutoProcessor,
TextIteratorStreamer
)
# Local imports
from qwen_vl_utils import process_vision_info
# Set device agnostic code
if torch.cuda.is_available():
device = "cuda"
elif (torch.backends.mps.is_available()) and (torch.backends.mps.is_built()):
device = "mps"
else:
device = "cpu"
print(f"[INFO] Using device: {device}")
# Define supported media extensions
image_extensions = Image.registered_extensions()
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "gif", "webm", "m4v", "3gp") # Removed .wav as it's audio, not video
def identify_and_save_blob(blob_path):
"""
Identifies if the blob is an image or video and saves it with a unique name.
Returns the saved file path and its media type ("image" or "video").
"""
try:
with open(blob_path, 'rb') as file:
blob_content = file.read()
# Try to identify if it's an image
try:
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
extension = ".png" # Default to PNG for saving
media_type = "image"
except (IOError, SyntaxError):
# If it's not a valid image, assume it's a video
# We can try to get the actual extension from the blob_path,
# but for unknown types, MP4 is a good default.
_, ext = os.path.splitext(blob_path)
if ext.lower() in video_extensions:
extension = ext.lower()
else:
extension = ".mp4" # Default to MP4 for saving
media_type = "video"
# Create a unique filename
filename = f"temp_{uuid.uuid4()}_media{extension}"
with open(filename, "wb") as f:
f.write(blob_content)
return filename, media_type
except FileNotFoundError:
raise ValueError(f"The file {blob_path} was not found.")
except Exception as e:
raise ValueError(f"An error occurred while processing the file: {e}")
# Model and Processor Loading
# Define models and processors as dictionaries for easy selection
models = {
"Qwen/Qwen2.5-VL-7B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct",
trust_remote_code=True,
torch_dtype="auto",
device_map="auto").eval(),
"Qwen/Qwen2.5-VL-3B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct",
trust_remote_code=True,
torch_dtype="auto",
device_map="auto").eval()
}
processors = {
"Qwen/Qwen2.5-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True),
"Qwen/Qwen2.5-VL-3B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", trust_remote_code=True)
}
DESCRIPTION = "[Qwen2.5-VL Demo](https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5)"
@spaces.GPU
def run_example(media_input, text_input=None, model_id=None):
if media_input is None:
raise gr.Error("No media provided. Please upload an image or video before submitting.")
if model_id is None:
raise gr.Error("No model selected. Please select a model.")
start_time = time.time()
media_path = None
media_type = None
# Determine if it's an image (numpy array from gr.Image) or a file (from gr.File)
if isinstance(media_input, np.ndarray): # This comes from gr.Image
img = Image.fromarray(np.uint8(media_input))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
img.save(filename)
media_path = os.path.abspath(filename)
media_type = "image"
elif isinstance(media_input, str): # This comes from gr.File (filepath)
path = media_input
_, ext = os.path.splitext(path)
ext = ext.lower()
if ext in image_extensions:
media_path = path
media_type = "image"
elif ext in video_extensions:
media_path = path
media_type = "video"
else:
# For blobs or unknown file types, try to identify
try:
media_path, media_type = identify_and_save_blob(path)
print(f"Identified blob as: {media_type}, saved to: {media_path}")
except Exception as e:
print(f"Error identifying blob: {e}")
raise gr.Error("Unsupported media type. Please upload an image (PNG, JPG, etc.) or a video (MP4, AVI, etc.).")
else:
raise gr.Error("Unsupported input type for media. Please upload an image or video.")
print(f"[INFO] Processing {media_type} from {media_path}")
model = models[model_id]
processor = processors[model_id]
# Construct messages list based on media type
content_list = []
if media_type == "image":
content_list.append({"type": "image", "image": media_path})
elif media_type == "video":
content_list.append({"type": "video", "video": media_path, "fps": 8.0}) # Qwen2.5-VL often uses 8fps
if text_input:
content_list.append({"type": "text", "text": text_input})
else:
# Default prompt if no text_input is provided
content_list.append({"type": "text", "text": "What is in this image/video?"})
messages = [{"role": "user", "content": content_list}]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages) # This utility handles both image and video info
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
).to(device)
# Inference: Generation of the output using streaming
streamer = TextIteratorStreamer(
processor, skip_prompt=True, **{"skip_special_tokens": True}
)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
# Start generation in a separate thread to allow streaming
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer, None # Yield partial text and None for time until full generation
# Clean up the temporary file after it's processed (optional, depends on use case)
# if media_path and os.path.exists(media_path) and "temp_" in os.path.basename(media_path):
# os.remove(media_path)
end_time = time.time()
total_time = round(end_time - start_time, 2)
# Final yield with total time
yield buffer, f"{total_time} seconds"
# Clean up the temporary file after it's fully processed
if media_path and os.path.exists(media_path) and "temp_" in os.path.basename(media_path):
os.remove(media_path)
print(f"[INFO] Cleaned up temporary file: {media_path}")
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Qwen2.5-VL Input"):
with gr.Row():
with gr.Column():
# Change input to gr.File to accept both image and video
input_media = gr.File(
label="Upload Image or Video (JPG, PNG, MP4, AVI, etc.)",
type="filepath" # Use 'filepath' to get the path to the temp file
)
model_selector = gr.Dropdown(choices=list(models.keys()),
label="Model",
value="Qwen/Qwen2.5-VL-7B-Instruct")
text_input = gr.Textbox(label="Text Prompt")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text", interactive=False)
time_taken = gr.Textbox(label="Time taken for processing + inference", interactive=False)
submit_btn.click(run_example,
[input_media, text_input, model_selector],
[output_text, time_taken]) # Ensure output components match yield order
demo.launch(debug=True)