File size: 20,314 Bytes
a1a5f27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots

# Initialize session state variables if they don't exist
def init_session_state():
    if 'current_step' not in st.session_state:
        st.session_state.current_step = 0
    if 'assessment_data' not in st.session_state:
        st.session_state.assessment_data = {}
    if 'results_calculated' not in st.session_state:
        st.session_state.results_calculated = False
    if 'risk_data' not in st.session_state:
        st.session_state.risk_data = []
    if 'health_score' not in st.session_state:
        st.session_state.health_score = 0
    if 'recommendations' not in st.session_state:
        st.session_state.recommendations = []

# Define steps for the assessment
steps = [
    {"title": "Basic Information", "fields": ["age", "gender", "height", "weight"]},
    {"title": "Lifestyle", "fields": ["smoking_status", "alcohol_consumption", "physical_activity", "diet_type"]},
    {"title": "Medical History", "fields": ["family_history_diabetes", "family_history_heart_disease", 
                                           "family_history_hypertension", "previous_diagnoses"]},
    {"title": "Vital Signs", "fields": ["systolic_bp", "diastolic_bp", "resting_heart_rate"]},
    {"title": "Mental Health", "fields": ["stress_level", "sleep_quality", "sleep_duration"]},
    {"title": "Nutrition", "fields": ["daily_water_intake", "daily_fruit_veg_servings"]},
    {"title": "Additional Metrics", "fields": ["waist_circumference", "body_fat_percentage"]},
    {"title": "Additional Health Information", "fields": ["family_history_asthma", "family_history_obesity", 
                                                         "family_history_depression", "allergies", 
                                                         "chronic_pain", "mental_health_history"]}
]

# Function to calculate risk for different diseases
def calculate_risk(disease, data):
    risk = 0
    
    if disease == "Diabetes":
        if data.get("age", 0) > 45: risk += 10
        if float(data.get("bmi", 0)) > 30: risk += 15
        if data.get("family_history_diabetes", False): risk += 15
        if data.get("physical_activity", "") == "sedentary": risk += 10
    
    elif disease == "Heart Disease":
        if data.get("age", 0) > 55: risk += 10
        if data.get("systolic_bp", 0) > 140 or data.get("diastolic_bp", 0) > 90: risk += 15
        if data.get("family_history_heart_disease", False): risk += 15
        if data.get("smoking_status", "") == "current": risk += 15
    
    elif disease == "Hypertension":
        if data.get("systolic_bp", 0) > 140 or data.get("diastolic_bp", 0) > 90: risk += 20
        if data.get("family_history_hypertension", False): risk += 15
        if data.get("alcohol_consumption", "") == "heavy": risk += 10
    
    elif disease == "Obesity":
        if float(data.get("bmi", 0)) > 30: risk += 30
        if data.get("physical_activity", "") == "sedentary": risk += 15
        if data.get("family_history_obesity", False): risk += 10
    
    elif disease == "Asthma":
        if data.get("family_history_asthma", False): risk += 20
        if data.get("smoking_status", "") == "current": risk += 15
        allergies = data.get("allergies", "").lower()
        if "pollen" in allergies or "dust" in allergies: risk += 10
    
    elif disease == "Depression":
        if data.get("family_history_depression", False): risk += 15
        if data.get("stress_level", 0) > 7: risk += 15
        if data.get("sleep_quality", "") == "poor": risk += 10
        mental_health = data.get("mental_health_history", "").lower()
        if "depression" in mental_health or "anxiety" in mental_health: risk += 20
    
    return min(risk, 100)

# Function to generate recommendations
def generate_recommendations(data):
    recommendations = []
    
    if data.get("physical_activity", "") in ["sedentary", "light"]:
        recommendations.append("Increase your daily physical activity to at least 30 minutes of moderate exercise.")
    
    if data.get("daily_fruit_veg_servings", 0) < 5:
        recommendations.append("Increase your daily intake of fruits and vegetables to at least 5 servings.")
    
    if data.get("daily_water_intake", 0) < 2000:
        recommendations.append("Increase your daily water intake to at least 2 liters (2000ml).")
    
    if data.get("sleep_duration", 0) < 7 or data.get("sleep_quality", "") in ["poor", "fair"]:
        recommendations.append("Aim for 7-9 hours of quality sleep per night to improve overall health.")
    
    if data.get("stress_level", 0) > 7:
        recommendations.append("Practice stress-reduction techniques such as meditation or deep breathing exercises.")
    
    if data.get("smoking_status", "") == "current":
        recommendations.append("Consider quitting smoking to significantly reduce your risk of heart disease and other health problems.")
    
    if data.get("alcohol_consumption", "") == "heavy":
        recommendations.append("Reduce alcohol consumption to moderate levels or consider abstaining completely.")
    
    if float(data.get("bmi", 0)) > 25:
        recommendations.append("Work on maintaining a healthy weight through a balanced diet and regular exercise.")
    
    if data.get("chronic_pain", "") != "none":
        recommendations.append("Consult with a healthcare professional about managing your chronic pain and consider physical therapy or pain management techniques.")
    
    if data.get("mental_health_history", "") != "":
        recommendations.append("Continue to prioritize your mental health. Consider regular check-ins with a mental health professional.")
    
    return recommendations

# Function to calculate results
def calculate_results():
    # Calculate BMI if not already done
    if "bmi" not in st.session_state.assessment_data:
        height_m = st.session_state.assessment_data.get("height", 170) / 100
        weight = st.session_state.assessment_data.get("weight", 70)
        bmi = weight / (height_m * height_m)
        st.session_state.assessment_data["bmi"] = round(bmi, 1)
    
    # Calculate risk for each disease
    diseases = ["Diabetes", "Heart Disease", "Hypertension", "Obesity", "Asthma", "Depression"]
    risk_data = []
    
    for disease in diseases:
        risk = calculate_risk(disease, st.session_state.assessment_data)
        risk_data.append({"disease": disease, "risk": risk})
    
    st.session_state.risk_data = risk_data
    
    # Calculate overall health score (scaled to 0-100)
    total_risk = sum(item["risk"] for item in risk_data)
    health_score = round(100 * (1 - total_risk / (len(diseases) * 100)))
    st.session_state.health_score = health_score
    
    # Generate recommendations
    st.session_state.recommendations = generate_recommendations(st.session_state.assessment_data)
    
    st.session_state.results_calculated = True

# Function to handle form submission for each step
def process_step(step_index):
    # Save form data to session state
    for field in steps[step_index]["fields"]:
        if field in st.session_state:
            st.session_state.assessment_data[field] = st.session_state[field]
    
    # Move to next step or calculate results
    if step_index < len(steps) - 1:
        st.session_state.current_step += 1
    else:
        calculate_results()

# Function to go back to previous step
def go_back():
    if st.session_state.current_step > 0:
        st.session_state.current_step -= 1

# Function to restart assessment
def restart_assessment():
    st.session_state.current_step = 0
    st.session_state.assessment_data = {}
    st.session_state.results_calculated = False
    st.session_state.risk_data = []
    st.session_state.health_score = 0
    st.session_state.recommendations = []

# Main function for the Health Score module
def show_health_score():
    st.title("🏥 Health Score Assessment")
    
    # Initialize session state
    init_session_state()
    
    # Display results if calculated
    if st.session_state.results_calculated:
        st.header("Your Health Assessment Results")
        
        # Create columns for layout
        col1, col2 = st.columns(2)
        
        with col1:
            # Bar chart for disease risks
            risk_df = pd.DataFrame(st.session_state.risk_data)
            fig = px.bar(
                risk_df, 
                x='disease', 
                y='risk',
                title='Disease Risk Assessment',
                labels={'disease': 'Disease', 'risk': 'Risk Score'},
                color='risk',
                color_continuous_scale=[(0, 'green'), (0.5, 'yellow'), (1, 'red')]
            )
            st.plotly_chart(fig, use_container_width=True)
            
        with col2:
            # Radar chart for disease risks
            fig = go.Figure()
            
            fig.add_trace(go.Scatterpolar(
                r=[item["risk"] for item in st.session_state.risk_data],
                theta=[item["disease"] for item in st.session_state.risk_data],
                fill='toself',
                name='Risk Profile'
            ))
            
            fig.update_layout(
                polar=dict(
                    radialaxis=dict(
                        visible=True,
                        range=[0, 100]
                    )
                ),
                title="Health Risk Radar"
            )
            
            st.plotly_chart(fig, use_container_width=True)
        
        # Health score gauge
        fig = go.Figure(go.Indicator(
            mode="gauge+number",
            value=st.session_state.health_score,
            domain={'x': [0, 1], 'y': [0, 1]},
            title={'text': "Overall Health Score"},
            gauge={
                'axis': {'range': [0, 100]},
                'bar': {'color': "darkblue"},
                'steps': [
                    {'range': [0, 30], 'color': "red"},
                    {'range': [30, 70], 'color': "yellow"},
                    {'range': [70, 100], 'color': "green"}
                ]
            }
        ))
        
        st.plotly_chart(fig, use_container_width=True)
        
        # Recommendations
        st.subheader("Recommendations")
        for i, recommendation in enumerate(st.session_state.recommendations):
            st.markdown(f"- {recommendation}")
        
        # Button to restart assessment
        if st.button("Retake Assessment"):
            restart_assessment()
    
    # Display assessment form if results not calculated
    else:
        current_step = st.session_state.current_step
        step = steps[current_step]
        
        st.header(f"Comprehensive Health Assessment")
        st.subheader(f"{step['title']} (Step {current_step + 1} of {len(steps)})")
        
        # Create a centered container with smaller width
        col1, form_col, col3 = st.columns([1, 2, 1])
        
        with form_col:
            with st.form(f"step_{current_step}_form"):
                # Basic Information
                if "age" in step["fields"]:
                    st.session_state.age = st.number_input("Age", 0, 120, st.session_state.assessment_data.get("age", 30))
                
                if "gender" in step["fields"]:
                    st.session_state.gender = st.selectbox("Gender", 
                                                     ["male", "female", "other"], 
                                                     ["male", "female", "other"].index(st.session_state.assessment_data.get("gender", "male")))
                
                if "height" in step["fields"]:
                    st.session_state.height = st.number_input("Height (cm)", 100, 250, st.session_state.assessment_data.get("height", 170))
                
                if "weight" in step["fields"]:
                    st.session_state.weight = st.number_input("Weight (kg)", 30, 300, st.session_state.assessment_data.get("weight", 70))
                
                # Lifestyle
                if "smoking_status" in step["fields"]:
                    st.session_state.smoking_status = st.selectbox("Smoking Status", 
                                                                 ["never", "former", "current"], 
                                                                 ["never", "former", "current"].index(st.session_state.assessment_data.get("smoking_status", "never")))
                
                if "alcohol_consumption" in step["fields"]:
                    st.session_state.alcohol_consumption = st.selectbox("Alcohol Consumption", 
                                                                      ["none", "moderate", "heavy"], 
                                                                      ["none", "moderate", "heavy"].index(st.session_state.assessment_data.get("alcohol_consumption", "moderate")))
                
                if "physical_activity" in step["fields"]:
                    st.session_state.physical_activity = st.selectbox("Physical Activity Level", 
                                                                    ["sedentary", "light", "moderate", "vigorous"], 
                                                                    ["sedentary", "light", "moderate", "vigorous"].index(st.session_state.assessment_data.get("physical_activity", "moderate")))
                
                if "diet_type" in step["fields"]:
                    st.session_state.diet_type = st.selectbox("Diet Type", 
                                                            ["balanced", "high-carb", "high-protein", "vegetarian", "vegan"], 
                                                            ["balanced", "high-carb", "high-protein", "vegetarian", "vegan"].index(st.session_state.assessment_data.get("diet_type", "balanced")))
                
                # Medical History
                if "family_history_diabetes" in step["fields"]:
                    st.session_state.family_history_diabetes = st.checkbox("Family History of Diabetes", st.session_state.assessment_data.get("family_history_diabetes", False))
                
                if "family_history_heart_disease" in step["fields"]:
                    st.session_state.family_history_heart_disease = st.checkbox("Family History of Heart Disease", st.session_state.assessment_data.get("family_history_heart_disease", False))
                
                if "family_history_hypertension" in step["fields"]:
                    st.session_state.family_history_hypertension = st.checkbox("Family History of Hypertension", st.session_state.assessment_data.get("family_history_hypertension", False))
                
                if "previous_diagnoses" in step["fields"]:
                    st.session_state.previous_diagnoses = st.text_input("Previous Diagnoses (comma separated)", st.session_state.assessment_data.get("previous_diagnoses", ""))
                
                # Vital Signs
                if "systolic_bp" in step["fields"]:
                    st.session_state.systolic_bp = st.number_input("Systolic Blood Pressure", 70, 220, st.session_state.assessment_data.get("systolic_bp", 120))
                
                if "diastolic_bp" in step["fields"]:
                    st.session_state.diastolic_bp = st.number_input("Diastolic Blood Pressure", 40, 130, st.session_state.assessment_data.get("diastolic_bp", 80))
                
                if "resting_heart_rate" in step["fields"]:
                    st.session_state.resting_heart_rate = st.number_input("Resting Heart Rate", 40, 120, st.session_state.assessment_data.get("resting_heart_rate", 70))
                
                # Mental Health
                if "stress_level" in step["fields"]:
                    st.session_state.stress_level = st.slider("Stress Level (1-10)", 1, 10, st.session_state.assessment_data.get("stress_level", 5))
                
                if "sleep_quality" in step["fields"]:
                    st.session_state.sleep_quality = st.selectbox("Sleep Quality", 
                                                                ["poor", "fair", "good", "excellent"], 
                                                                ["poor", "fair", "good", "excellent"].index(st.session_state.assessment_data.get("sleep_quality", "good")))
                
                if "sleep_duration" in step["fields"]:
                    st.session_state.sleep_duration = st.number_input("Sleep Duration (hours)", 3.0, 12.0, float(st.session_state.assessment_data.get("sleep_duration", 7.0)), 0.5)
                
                # Nutrition
                if "daily_water_intake" in step["fields"]:
                    st.session_state.daily_water_intake = st.number_input("Daily Water Intake (ml)", 0, 5000, st.session_state.assessment_data.get("daily_water_intake", 2000), 100)
                
                if "daily_fruit_veg_servings" in step["fields"]:
                    st.session_state.daily_fruit_veg_servings = st.number_input("Daily Fruit & Vegetable Servings", 0, 10, st.session_state.assessment_data.get("daily_fruit_veg_servings", 3))
                
                # Additional Metrics
                if "waist_circumference" in step["fields"]:
                    st.session_state.waist_circumference = st.number_input("Waist Circumference (cm)", 50, 200, st.session_state.assessment_data.get("waist_circumference", 80))
                
                if "body_fat_percentage" in step["fields"]:
                    st.session_state.body_fat_percentage = st.number_input("Body Fat Percentage", 5.0, 50.0, float(st.session_state.assessment_data.get("body_fat_percentage", 20.0)), 0.5)
                
                # Additional Health Information
                if "family_history_asthma" in step["fields"]:
                    st.session_state.family_history_asthma = st.checkbox("Family History of Asthma", st.session_state.assessment_data.get("family_history_asthma", False))
                
                if "family_history_obesity" in step["fields"]:
                    st.session_state.family_history_obesity = st.checkbox("Family History of Obesity", st.session_state.assessment_data.get("family_history_obesity", False))
                
                if "family_history_depression" in step["fields"]:
                    st.session_state.family_history_depression = st.checkbox("Family History of Depression", st.session_state.assessment_data.get("family_history_depression", False))
                
                if "allergies" in step["fields"]:
                    st.session_state.allergies = st.text_input("Allergies (comma separated)", st.session_state.assessment_data.get("allergies", ""))
                
                if "chronic_pain" in step["fields"]:
                    st.session_state.chronic_pain = st.selectbox("Chronic Pain Level", 
                                                               ["none", "mild", "moderate", "severe"], 
                                                               ["none", "mild", "moderate", "severe"].index(st.session_state.assessment_data.get("chronic_pain", "none")))
                
                if "mental_health_history" in step["fields"]:
                    st.session_state.mental_health_history = st.text_area("Mental Health History", st.session_state.assessment_data.get("mental_health_history", ""))
                
                # Form buttons
                col1, col2 = st.columns(2)
                with col1:
                    if current_step > 0:
                        back_button = st.form_submit_button("Back")
                        if back_button:
                            go_back()
                
                with col2:
                    if current_step < len(steps) - 1:
                        next_button = st.form_submit_button("Next")
                        if next_button:
                            process_step(current_step)
                    else:
                        submit_button = st.form_submit_button("Submit Assessment")
                        if submit_button:
                            process_step(current_step)