Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,17 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
-
from transformers import
|
5 |
|
6 |
# Load the model and processor
|
7 |
-
model_id = "
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
# Initialize the model and processor
|
11 |
-
model =
|
12 |
-
|
13 |
-
torch_dtype=torch.bfloat16,
|
14 |
-
low_cpu_mem_usage=True,
|
15 |
-
use_flash_attn=True,
|
16 |
-
trust_remote_code=True
|
17 |
-
).eval().to(device)
|
18 |
-
|
19 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
20 |
|
21 |
def generate_model_response(image_file, user_query):
|
22 |
"""
|
@@ -34,18 +29,14 @@ def generate_model_response(image_file, user_query):
|
|
34 |
raw_image = Image.open(image_file).convert("RGB")
|
35 |
|
36 |
# Prepare inputs for the model using the processor
|
37 |
-
inputs = processor(
|
38 |
-
text=user_query,
|
39 |
-
images=raw_image,
|
40 |
-
return_tensors="pt"
|
41 |
-
).to(device)
|
42 |
|
43 |
# Generate response from the model
|
44 |
-
outputs = model
|
45 |
|
46 |
# Decode and return the response
|
47 |
-
response_text =
|
48 |
-
return response_text
|
49 |
|
50 |
except Exception as e:
|
51 |
print(f"Error in generating response: {e}")
|
|
|
1 |
+
import re
|
2 |
+
import io
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
+
from transformers import OwlViTProcessor, OwlViTForImageClassification
|
7 |
|
8 |
# Load the model and processor
|
9 |
+
model_id = "google/owlvit-base-patch16"
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
# Initialize the model and processor
|
13 |
+
model = OwlViTForImageClassification.from_pretrained(model_id).to(device)
|
14 |
+
processor = OwlViTProcessor.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def generate_model_response(image_file, user_query):
|
17 |
"""
|
|
|
29 |
raw_image = Image.open(image_file).convert("RGB")
|
30 |
|
31 |
# Prepare inputs for the model using the processor
|
32 |
+
inputs = processor(images=raw_image, text=user_query, return_tensors="pt").to(device)
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Generate response from the model
|
35 |
+
outputs = model(**inputs)
|
36 |
|
37 |
# Decode and return the response
|
38 |
+
response_text = outputs.logits.argmax(dim=-1) # Example of how to process output
|
39 |
+
return f"Detected class ID: {response_text.item()}"
|
40 |
|
41 |
except Exception as e:
|
42 |
print(f"Error in generating response: {e}")
|