Spaces:
Runtime error
Runtime error
Update multimodal_queries.py
Browse files- multimodal_queries.py +20 -31
multimodal_queries.py
CHANGED
@@ -1,18 +1,21 @@
|
|
1 |
-
import re
|
2 |
-
import base64
|
3 |
-
import io
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
from PIL import Image
|
7 |
-
from transformers import
|
8 |
|
9 |
# Load the model and processor
|
10 |
-
model_id = "
|
11 |
-
|
|
|
|
|
|
|
12 |
model_id,
|
13 |
torch_dtype=torch.bfloat16,
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
processor = AutoProcessor.from_pretrained(model_id)
|
17 |
|
18 |
def generate_model_response(image_file, user_query):
|
@@ -24,49 +27,35 @@ def generate_model_response(image_file, user_query):
|
|
24 |
- user_query: The user's question about the image.
|
25 |
|
26 |
Returns:
|
27 |
-
- str: The generated response from the model
|
28 |
"""
|
29 |
try:
|
30 |
# Load and prepare the image
|
31 |
raw_image = Image.open(image_file).convert("RGB")
|
32 |
|
33 |
-
# Prepare
|
34 |
-
|
35 |
-
{
|
36 |
-
"role": "user",
|
37 |
-
"content": [
|
38 |
-
{"type": "image", "url": "<|image|>"}, # Placeholder for image
|
39 |
-
{"type": "text", "text": user_query}
|
40 |
-
]
|
41 |
-
}
|
42 |
-
]
|
43 |
-
|
44 |
-
# Apply chat template to prepare inputs for the model
|
45 |
-
inputs = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
|
46 |
|
47 |
-
# Process the image and text inputs together
|
48 |
-
inputs = processor(inputs, raw_image, return_tensors="pt").to(model.device)
|
49 |
-
|
50 |
# Generate response from the model
|
51 |
outputs = model.generate(**inputs)
|
52 |
|
53 |
-
# Decode and
|
54 |
-
|
55 |
|
56 |
-
return
|
57 |
|
58 |
except Exception as e:
|
59 |
print(f"Error in generating response: {e}")
|
60 |
-
return f"
|
61 |
|
62 |
# Gradio Interface
|
63 |
iface = gr.Interface(
|
64 |
fn=generate_model_response,
|
65 |
inputs=[
|
66 |
gr.Image(type="file", label="Upload Image"),
|
67 |
-
gr.Textbox(label="Enter your question", placeholder="
|
68 |
],
|
69 |
-
outputs=
|
70 |
)
|
71 |
|
72 |
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from PIL import Image
|
4 |
+
from transformers import AutoProcessor, AutoModel
|
5 |
|
6 |
# Load the model and processor
|
7 |
+
model_id = "OpenGVLab/InternVL2_5-78B"
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
# Initialize the model and processor
|
11 |
+
model = AutoModel.from_pretrained(
|
12 |
model_id,
|
13 |
torch_dtype=torch.bfloat16,
|
14 |
+
low_cpu_mem_usage=True,
|
15 |
+
use_flash_attn=True,
|
16 |
+
trust_remote_code=True
|
17 |
+
).eval().to(device)
|
18 |
+
|
19 |
processor = AutoProcessor.from_pretrained(model_id)
|
20 |
|
21 |
def generate_model_response(image_file, user_query):
|
|
|
27 |
- user_query: The user's question about the image.
|
28 |
|
29 |
Returns:
|
30 |
+
- str: The generated response from the model.
|
31 |
"""
|
32 |
try:
|
33 |
# Load and prepare the image
|
34 |
raw_image = Image.open(image_file).convert("RGB")
|
35 |
|
36 |
+
# Prepare inputs for the model using the processor
|
37 |
+
inputs = processor(images=raw_image, text=user_query, return_tensors="pt").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
|
|
|
|
|
39 |
# Generate response from the model
|
40 |
outputs = model.generate(**inputs)
|
41 |
|
42 |
+
# Decode and return the response
|
43 |
+
response_text = processor.decode(outputs[0], skip_special_tokens=True)
|
44 |
|
45 |
+
return response_text
|
46 |
|
47 |
except Exception as e:
|
48 |
print(f"Error in generating response: {e}")
|
49 |
+
return f"An error occurred: {str(e)}"
|
50 |
|
51 |
# Gradio Interface
|
52 |
iface = gr.Interface(
|
53 |
fn=generate_model_response,
|
54 |
inputs=[
|
55 |
gr.Image(type="file", label="Upload Image"),
|
56 |
+
gr.Textbox(label="Enter your question", placeholder="What do you want to know about this image?")
|
57 |
],
|
58 |
+
outputs="text",
|
59 |
)
|
60 |
|
61 |
iface.launch(share=True)
|