import cv2 import numpy as np import random import os def extract_video_frames(video_path, n_frames=30, frame_size=(96, 96)): """ Extracts frames from a video, handling various lengths and potential errors. Args: video_path (str): Path to the video file. n_frames (int): The target number of frames to extract. frame_size (tuple): The target (width, height) for each frame. Returns: np.ndarray: An array of shape (n_frames, height, width, 3) with normalized pixel values (0-1), or None if extraction fails critically. Frames will be padded if the video is too short or has read errors. """ if not os.path.exists(video_path): print(f"Error: Video file not found at {video_path}") return None cap = cv2.VideoCapture(video_path) if not cap.isOpened(): print(f"Error: Could not open video file {video_path}") return None total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = cap.get(cv2.CAP_PROP_FPS) # Basic validation if total_frames < 1: print(f"Warning: Video has {total_frames} frames. Cannot extract.") cap.release() # Return array of zeros matching the expected shape return np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32) if fps < 1: print(f"Warning: Video has invalid FPS ({fps}). Proceeding, but timing might be off.") # Use a default assumption if FPS is invalid but frames exist fps = 30.0 # Or another sensible default frames = [] extracted_count = 0 last_good_frame_processed = None # Store the last successfully processed frame # Calculate indices of frames to attempt extraction (evenly spaced) # Ensure indices are within the valid range [0, total_frames - 1] indices = np.linspace(0, total_frames - 1, n_frames, dtype=int) for i, frame_index in enumerate(indices): cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index) ret, frame = cap.read() processed_frame = None if ret and frame is not None: try: # Process valid frame frame_resized = cv2.resize(frame, frame_size) frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2RGB) processed_frame = frame_rgb.astype(np.float32) / 255.0 last_good_frame_processed = processed_frame # Update last good frame extracted_count += 1 except cv2.error as e: print(f"Warning: OpenCV error processing frame {frame_index}: {e}") # Fallback to last good frame if available if last_good_frame_processed is not None: processed_frame = last_good_frame_processed.copy() else: # If no good frame seen yet, create a placeholder processed_frame = np.zeros((*frame_size[::-1], 3), dtype=np.float32) except Exception as e: print(f"Warning: Unexpected error processing frame {frame_index}: {e}") if last_good_frame_processed is not None: processed_frame = last_good_frame_processed.copy() else: processed_frame = np.zeros((*frame_size[::-1], 3), dtype=np.float32) else: # Handle read failure (e.g., end of video reached early, corrupted frame) print(f"Warning: Failed to read frame at index {frame_index}. Using fallback.") if last_good_frame_processed is not None: processed_frame = last_good_frame_processed.copy() else: # If read fails and no previous frame exists, use a zero frame processed_frame = np.zeros((*frame_size[::-1], 3), dtype=np.float32) frames.append(processed_frame) cap.release() if extracted_count == 0 and total_frames > 0: print("Warning: Failed to extract or process any valid frames, returning array of zeros.") # This case should ideally be covered by fallbacks, but as a safeguard: return np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32) # Ensure the final output always has n_frames by padding if necessary # (This should technically be handled by the loop logic now, but double-check) final_frames = np.array(frames) if final_frames.shape[0] < n_frames: print(f"Warning: Padding needed, final array shape {final_frames.shape} vs target {n_frames}") if final_frames.shape[0] == 0: # If somehow array is empty padding = np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32) else: padding_needed = n_frames - final_frames.shape[0] # Use the very last frame in the list (could be a fallback frame) for padding last_frame_for_padding = final_frames[-1][np.newaxis, ...] padding = np.repeat(last_frame_for_padding, padding_needed, axis=0) final_frames = np.concatenate((final_frames, padding), axis=0) elif final_frames.shape[0] > n_frames: # Should not happen with linspace logic, but truncate if it does print(f"Warning: More frames than expected ({final_frames.shape[0]}), truncating to {n_frames}") final_frames = final_frames[:n_frames] # Final check of output shape if final_frames.shape != (n_frames, frame_size[1], frame_size[0], 3): print(f"Error: Final frame array shape mismatch! Expected {(n_frames, frame_size[1], frame_size[0], 3)}, Got {final_frames.shape}") # Attempt to reshape or return None/zeros? Returning zeros is safer. return np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32) return final_frames