Update app.py
Browse files
app.py
CHANGED
@@ -2,45 +2,32 @@
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
-
|
6 |
from Fight_detec_func import fight_detec
|
7 |
from objec_detect_yolo import detection
|
8 |
-
import
|
9 |
|
10 |
-
def analyze_video(
|
11 |
-
if
|
12 |
return {"Error": "No video file uploaded."}
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
input_filename = os.path.basename(video_file_obj.name)
|
17 |
-
base, ext = os.path.splitext(input_filename)
|
18 |
-
unique_suffix = str(int(time.time() * 1000)) # Add timestamp for uniqueness
|
19 |
-
safe_base = "".join(c if c.isalnum() or c in ('-', '_') else '_' for c in base) # Sanitize name
|
20 |
-
video_path = os.path.join(temp_dir, f"{safe_base}_{unique_suffix}{ext}")
|
21 |
|
22 |
try:
|
23 |
-
#
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
print(f"Processing video: {video_path}")
|
29 |
-
|
30 |
-
# Run detection functions
|
31 |
-
# fight_detec returns (result_string, prediction_score)
|
32 |
-
# detection returns (set_of_labels, output_video_path)
|
33 |
-
fight_status, _ = fight_detec(video_path, debug=False)
|
34 |
-
detected_objects_set, annotated_video_path = detection(video_path)
|
35 |
|
36 |
# Format results
|
37 |
-
# Convert set to sorted list for consistent JSON output
|
38 |
detected_objects_list = sorted(list(detected_objects_set))
|
39 |
|
40 |
print(f"Fight Status: {fight_status}")
|
41 |
print(f"Detected Objects: {detected_objects_list}")
|
42 |
-
#
|
43 |
-
#
|
|
|
44 |
|
45 |
results = {
|
46 |
"Fight Detection": fight_status,
|
@@ -48,42 +35,23 @@ def analyze_video(video_file_obj):
|
|
48 |
}
|
49 |
|
50 |
except Exception as e:
|
51 |
-
print(f"Error during processing: {
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
os.remove(video_path)
|
58 |
-
print(f"Removed temp video file: {video_path}")
|
59 |
-
except OSError as e:
|
60 |
-
print(f"Error removing temp file {video_path}: {e}")
|
61 |
-
if 'temp_dir' in locals() and os.path.exists(temp_dir):
|
62 |
-
try:
|
63 |
-
# Clean up the results dir created by objec_detect_yolo if it's inside temp_dir
|
64 |
-
results_dir_path = os.path.join(temp_dir, "results")
|
65 |
-
if os.path.exists(results_dir_path) and os.path.isdir(results_dir_path):
|
66 |
-
# Remove files inside results dir first
|
67 |
-
for item in os.listdir(results_dir_path):
|
68 |
-
item_path = os.path.join(results_dir_path, item)
|
69 |
-
if os.path.isfile(item_path):
|
70 |
-
os.remove(item_path)
|
71 |
-
os.rmdir(results_dir_path) # Now remove empty results dir
|
72 |
-
print(f"Removed temp results directory: {results_dir_path}")
|
73 |
-
|
74 |
-
os.rmdir(temp_dir) # Attempt to remove the main temp dir
|
75 |
-
print(f"Removed temp directory: {temp_dir}")
|
76 |
-
except OSError as e:
|
77 |
-
# Might fail if other files are present or dir not empty
|
78 |
-
print(f"Error removing temp directory {temp_dir} or its contents: {e}")
|
79 |
|
|
|
|
|
|
|
80 |
|
81 |
return results
|
82 |
|
83 |
-
# Interface Definition
|
84 |
iface = gr.Interface(
|
85 |
fn=analyze_video,
|
86 |
-
inputs=gr.Video(label="Upload Video"),
|
87 |
outputs=gr.JSON(label="Detection Results"),
|
88 |
title="Fight and Object Detection Analysis",
|
89 |
description="Upload a video (< 1 min recommended) to detect potential fights and specific objects (Fire, Gun, Knife, Smoke, License_Plate). Results appear as JSON.",
|
@@ -97,3 +65,4 @@ iface = gr.Interface(
|
|
97 |
# Launch the interface
|
98 |
if __name__ == "__main__":
|
99 |
iface.launch()
|
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
+
# No longer need tempfile or time here, Gradio manages the input temp file
|
6 |
from Fight_detec_func import fight_detec
|
7 |
from objec_detect_yolo import detection
|
8 |
+
import traceback # For better error logging
|
9 |
|
10 |
+
def analyze_video(video_filepath): # RENAMED parameter to reflect it's a string path
|
11 |
+
if video_filepath is None:
|
12 |
return {"Error": "No video file uploaded."}
|
13 |
|
14 |
+
# video_filepath *is* the path to the temporary file created by Gradio
|
15 |
+
print(f"Processing video: {video_filepath}")
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
try:
|
18 |
+
# Directly use the filepath provided by Gradio for analysis
|
19 |
+
# No need to copy the file again.
|
20 |
+
fight_status, _ = fight_detec(video_filepath, debug=False)
|
21 |
+
detected_objects_set, annotated_video_path = detection(video_filepath) # This function saves its own output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Format results
|
|
|
24 |
detected_objects_list = sorted(list(detected_objects_set))
|
25 |
|
26 |
print(f"Fight Status: {fight_status}")
|
27 |
print(f"Detected Objects: {detected_objects_list}")
|
28 |
+
# annotated_video_path points to the video saved by detection(),
|
29 |
+
# but we are not returning it to the user via JSON here.
|
30 |
+
# It exists within the Space's filesystem in the 'results' folder.
|
31 |
|
32 |
results = {
|
33 |
"Fight Detection": fight_status,
|
|
|
35 |
}
|
36 |
|
37 |
except Exception as e:
|
38 |
+
print(f"Error during processing video: {video_filepath}")
|
39 |
+
print(f"Error type: {type(e).__name__}")
|
40 |
+
print(f"Error message: {e}")
|
41 |
+
print("Traceback:")
|
42 |
+
traceback.print_exc() # Print detailed traceback to Space logs
|
43 |
+
results = {"Error": f"Processing failed. Check Space logs for details. Error: {str(e)}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# No explicit cleanup needed for video_filepath, Gradio handles its temporary input file.
|
46 |
+
# Cleanup for files created by detection() (like annotated_video_path)
|
47 |
+
# would ideally happen within that function or rely on the Space's ephemeral nature.
|
48 |
|
49 |
return results
|
50 |
|
51 |
+
# Interface Definition (remains the same)
|
52 |
iface = gr.Interface(
|
53 |
fn=analyze_video,
|
54 |
+
inputs=gr.Video(label="Upload Video"),
|
55 |
outputs=gr.JSON(label="Detection Results"),
|
56 |
title="Fight and Object Detection Analysis",
|
57 |
description="Upload a video (< 1 min recommended) to detect potential fights and specific objects (Fire, Gun, Knife, Smoke, License_Plate). Results appear as JSON.",
|
|
|
65 |
# Launch the interface
|
66 |
if __name__ == "__main__":
|
67 |
iface.launch()
|
68 |
+
|