fight-object_detection / frame_slicer.py
KillD00zer's picture
Update frame_slicer.py
009434b verified
import cv2
import numpy as np
import random
import os
def extract_video_frames(video_path, n_frames=30, frame_size=(96, 96)):
"""
Extracts frames from a video, handling various lengths and potential errors.
Args:
video_path (str): Path to the video file.
n_frames (int): The target number of frames to extract.
frame_size (tuple): The target (width, height) for each frame.
Returns:
np.ndarray: An array of shape (n_frames, height, width, 3) with normalized
pixel values (0-1), or None if extraction fails critically.
Frames will be padded if the video is too short or has read errors.
"""
if not os.path.exists(video_path):
print(f"Error: Video file not found at {video_path}")
return None
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Error: Could not open video file {video_path}")
return None
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
# Basic validation
if total_frames < 1:
print(f"Warning: Video has {total_frames} frames. Cannot extract.")
cap.release()
# Return array of zeros matching the expected shape
return np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32)
if fps < 1:
print(f"Warning: Video has invalid FPS ({fps}). Proceeding, but timing might be off.")
# Use a default assumption if FPS is invalid but frames exist
fps = 30.0 # Or another sensible default
frames = []
extracted_count = 0
last_good_frame_processed = None # Store the last successfully processed frame
# Calculate indices of frames to attempt extraction (evenly spaced)
# Ensure indices are within the valid range [0, total_frames - 1]
indices = np.linspace(0, total_frames - 1, n_frames, dtype=int)
for i, frame_index in enumerate(indices):
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
ret, frame = cap.read()
processed_frame = None
if ret and frame is not None:
try:
# Process valid frame
frame_resized = cv2.resize(frame, frame_size)
frame_rgb = cv2.cvtColor(frame_resized, cv2.COLOR_BGR2RGB)
processed_frame = frame_rgb.astype(np.float32) / 255.0
last_good_frame_processed = processed_frame # Update last good frame
extracted_count += 1
except cv2.error as e:
print(f"Warning: OpenCV error processing frame {frame_index}: {e}")
# Fallback to last good frame if available
if last_good_frame_processed is not None:
processed_frame = last_good_frame_processed.copy()
else: # If no good frame seen yet, create a placeholder
processed_frame = np.zeros((*frame_size[::-1], 3), dtype=np.float32)
except Exception as e:
print(f"Warning: Unexpected error processing frame {frame_index}: {e}")
if last_good_frame_processed is not None:
processed_frame = last_good_frame_processed.copy()
else:
processed_frame = np.zeros((*frame_size[::-1], 3), dtype=np.float32)
else:
# Handle read failure (e.g., end of video reached early, corrupted frame)
print(f"Warning: Failed to read frame at index {frame_index}. Using fallback.")
if last_good_frame_processed is not None:
processed_frame = last_good_frame_processed.copy()
else:
# If read fails and no previous frame exists, use a zero frame
processed_frame = np.zeros((*frame_size[::-1], 3), dtype=np.float32)
frames.append(processed_frame)
cap.release()
if extracted_count == 0 and total_frames > 0:
print("Warning: Failed to extract or process any valid frames, returning array of zeros.")
# This case should ideally be covered by fallbacks, but as a safeguard:
return np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32)
# Ensure the final output always has n_frames by padding if necessary
# (This should technically be handled by the loop logic now, but double-check)
final_frames = np.array(frames)
if final_frames.shape[0] < n_frames:
print(f"Warning: Padding needed, final array shape {final_frames.shape} vs target {n_frames}")
if final_frames.shape[0] == 0: # If somehow array is empty
padding = np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32)
else:
padding_needed = n_frames - final_frames.shape[0]
# Use the very last frame in the list (could be a fallback frame) for padding
last_frame_for_padding = final_frames[-1][np.newaxis, ...]
padding = np.repeat(last_frame_for_padding, padding_needed, axis=0)
final_frames = np.concatenate((final_frames, padding), axis=0)
elif final_frames.shape[0] > n_frames:
# Should not happen with linspace logic, but truncate if it does
print(f"Warning: More frames than expected ({final_frames.shape[0]}), truncating to {n_frames}")
final_frames = final_frames[:n_frames]
# Final check of output shape
if final_frames.shape != (n_frames, frame_size[1], frame_size[0], 3):
print(f"Error: Final frame array shape mismatch! Expected {(n_frames, frame_size[1], frame_size[0], 3)}, Got {final_frames.shape}")
# Attempt to reshape or return None/zeros? Returning zeros is safer.
return np.zeros((n_frames, *frame_size[::-1], 3), dtype=np.float32)
return final_frames