fight-object_detection / objec_detect_yolo.py
KillD00zer's picture
Upload 9 files
da07a7d verified
raw
history blame
4.42 kB
import cv2
import numpy as np
import os
from ultralytics import YOLO
import time
from typing import Tuple, Set
def detection(path: str) -> Tuple[Set[str], str]:
"""
Detects and tracks objects in a video using YOLOv8 model, saving an annotated output video.
Args:
path (str): Path to the input video file. Supports common video formats (mp4, avi, etc.)
Returns:
Tuple[Set[str], str]:
- Set of unique detected object labels (e.g., {'Gun', 'Knife'})
- Path to the output annotated video with detection boxes and tracking IDs
Raises:
FileNotFoundError: If input video doesn't exist
ValueError: If video cannot be opened/processed
"""
# Validate input file exists
if not os.path.exists(path):
raise FileNotFoundError(f"Video file not found: {path}")
# Initialize YOLOv8 model with pretrained weights
# Model is trained to detect: ['Fire', 'Gun', 'License_Plate', 'Smoke', 'knife']
model = YOLO(os.path.join(os.path.dirname(__file__), "yolo", "best.pt"))
class_names = model.names # Get class label mappings
# Set up output paths:
# 1. Temporary output during processing
# 2. Final output with detected objects in filename
input_video_name = os.path.basename(path)
base_name = os.path.splitext(input_video_name)[0]
temp_output_name = f"{base_name}_output_temp.mp4"
output_dir = "results"
os.makedirs(output_dir, exist_ok=True) # Create output dir if needed
if not os.path.exists(output_dir):
raise ValueError(f"Failed to create output directory: {output_dir}")
temp_output_path = os.path.join(output_dir, temp_output_name)
# Video processing setup:
# - Open input video stream
# - Initialize output writer with MP4 codec
cap = cv2.VideoCapture(path)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {path}")
# Process all frames at 640x640 resolution for consistency
frame_width, frame_height = 640, 640
out = cv2.VideoWriter(
temp_output_path,
cv2.VideoWriter_fourcc(*'mp4v'), # MP4 codec
30.0, # Output FPS
(frame_width, frame_height)
)
# Main processing loop:
# 1. Read each frame
# 2. Run object detection + tracking
# 3. Annotate frame with boxes and IDs
# 4. Collect detected classes
crimes = [] # Track all detected objects
start = time.time()
print(f"[INFO] Processing started at {start:.2f} seconds")
while True:
ret, frame = cap.read()
if not ret: # End of video
break
# Resize and run detection + tracking
frame = cv2.resize(frame, (frame_width, frame_height))
results = model.track(
source=frame,
conf=0.7, # Minimum confidence threshold
persist=True # Enable tracking across frames
)
# Annotate frame with boxes and tracking IDs
annotated_frame = results[0].plot()
# Record detected classes
for box in results[0].boxes:
cls = int(box.cls)
crimes.append(class_names[cls])
out.write(annotated_frame)
# Clean up video resources
end = time.time()
print(f"[INFO] Processing finished at {end:.2f} seconds")
print(f"[INFO] Total execution time: {end - start:.2f} seconds")
cap.release()
out.release()
# Generate final output filename containing detected object labels
# Format: {original_name}_{detected_objects}_output.mp4
unique_crimes = set(crimes)
crimes_str = "_".join(sorted(unique_crimes)).replace(" ", "_")[:50] # truncate if needed
final_output_name = f"{base_name}_{crimes_str}_output.mp4"
final_output_path = os.path.join(output_dir, final_output_name)
# Rename the video file
os.rename(temp_output_path, final_output_path)
print(f"[INFO] Detected crimes: {unique_crimes}")
print(f"[INFO] Annotated video saved at: {final_output_path}")
return unique_crimes, final_output_path
# # Entry point
# path0 = input("Enter the local path to the video file to detect objects: ")
# path = path0.strip('"') # Remove extra quotes if copied from Windows
# print(f"[INFO] Loading video: {path}")
# detection(path)