fight-object_detection / objec_detect_yolo.py
KillD00zer's picture
Update objec_detect_yolo.py
61bcdf4 verified
raw
history blame
3.19 kB
import cv2
import numpy as np
import os
from ultralytics import YOLO
import time
from typing import Tuple, Set
def detect_objects_in_video(path: str) -> Tuple[Set[str], str]:
"""
Detects and tracks objects in a video using a YOLOv8 model, saving an annotated output video.
Args:
path (str): Path to the input video file.
Returns:
Tuple[Set[str], str]:
- Set of unique detected object labels (e.g., {'Gun', 'Knife'})
- Path to the output annotated video with detection boxes and tracking IDs
"""
if not os.path.exists(path):
raise FileNotFoundError(f"Video file not found: {path}")
# Load YOLOv8 model (adjust path if necessary)
model = YOLO("yolo/best.pt") # Make sure this path is correct
class_names = model.names
# Output setup
input_video_name = os.path.basename(path)
base_name = os.path.splitext(input_video_name)[0]
temp_output_name = f"{base_name}_output_temp.mp4"
output_dir = "results"
os.makedirs(output_dir, exist_ok=True)
temp_output_path = os.path.join(output_dir, temp_output_name)
# Video I/O setup
cap = cv2.VideoCapture(path)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {path}")
frame_width, frame_height = 640, 640
out = cv2.VideoWriter(
temp_output_path,
cv2.VideoWriter_fourcc(*'mp4v'),
30.0,
(frame_width, frame_height)
)
detected_labels = set()
start = time.time()
print(f"[INFO] Processing started at {start:.2f} seconds")
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, (frame_width, frame_height))
# Run detection and tracking
results = model.track(
source=frame,
conf=0.7,
persist=True
)
if results and hasattr(results[0], "plot"):
annotated_frame = results[0].plot()
out.write(annotated_frame)
# Extract class labels
if hasattr(results[0], "boxes"):
for box in results[0].boxes:
cls = int(box.cls)
detected_labels.add(class_names[cls])
else:
out.write(frame)
end = time.time()
cap.release()
out.release()
# Create final output filename
crimes_str = "_".join(sorted(detected_labels)).replace(" ", "_")[:50]
final_output_name = f"{base_name}_{crimes_str}_output.mp4"
final_output_path = os.path.join(output_dir, final_output_name)
os.rename(temp_output_path, final_output_path)
print(f"[INFO] Processing finished at {end:.2f} seconds")
print(f"[INFO] Total execution time: {end - start:.2f} seconds")
print(f"[INFO] Detected crimes: {detected_labels}")
print(f"[INFO] Annotated video saved at: {final_output_path}")
return detected_labels, final_output_path
# Example usage (uncomment to use as standalone script)
# if __name__ == "__main__":
# video_path = input("Enter the path to the video file: ").strip('"')
# print(f"[INFO] Loading video: {video_path}")
# detect_objects_in_video(video_path)