File size: 8,840 Bytes
da07a7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import numpy as np
import cv2
import traceback
from collections import Counter
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import Sequence
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Input, Conv3D, MaxPooling3D, Flatten, Dense, Dropout, BatchNormalization
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, CSVLogger
import tensorflow as tf

# === CONFIG ===
DATA_DIR = "D:\\K_REPO\\ComV\\train"
N_FRAMES = 30
IMG_SIZE = (96, 96)
EPOCHS = 10
BATCH_SIZE = 14
CHECKPOINT_DIR = r"D:\K_REPO\ComV\AI_made\trainnig_output\checkpoint"
RESUME_TRAINING = 1
MIN_REQUIRED_FRAMES = 10
OUTPUT_PATH = r"D:\K_REPO\ComV\AI_made\trainnig_output\final_model_2.h5"
# Optimize OpenCV
cv2.setUseOptimized(True)
cv2.setNumThreads(8)

# === VIDEO DATA GENERATOR ===
class VideoDataGenerator(Sequence):
    def __init__(self, video_paths, labels, batch_size, n_frames, img_size):
        self.video_paths, self.labels = self._filter_invalid_videos(video_paths, labels)
        self.batch_size = batch_size
        self.n_frames = n_frames
        self.img_size = img_size
        self.indices = np.arange(len(self.video_paths))
        print(f"[INFO] Final dataset size: {len(self.video_paths)} videos")
        
    def _filter_invalid_videos(self, paths, labels):
        valid_paths = []
        valid_labels = []
        
        for path, label in zip(paths, labels):
            cap = cv2.VideoCapture(path)
            if not cap.isOpened():
                print(f"[WARNING] Could not open video: {path}")
                continue
                
            total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
            cap.release()
            
            if total_frames < MIN_REQUIRED_FRAMES:
                print(f"[WARNING] Skipping {path} - only {total_frames} frames (needs at least {MIN_REQUIRED_FRAMES})")
                continue
                
            valid_paths.append(path)
            valid_labels.append(label)
            
        return valid_paths, valid_labels
        
    def __len__(self):
        return int(np.ceil(len(self.video_paths) / self.batch_size))
    
    def __getitem__(self, index):
        batch_indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]
        X, y = [], []
        
        for i in batch_indices:
            path = self.video_paths[i]
            label = self.labels[i]
            try:
                frames = self._load_video_frames(path)
                X.append(frames)
                y.append(label)
            except Exception as e:
                print(f"[WARNING] Error processing {path} - {str(e)}")
                X.append(np.zeros((self.n_frames, *self.img_size, 3)))
                y.append(label)
                
        return np.array(X), np.array(y)
    
    def _load_video_frames(self, path):
        cap = cv2.VideoCapture(path)
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        
        if total_frames < self.n_frames:
            frame_indices = np.linspace(0, total_frames - 1, min(total_frames, self.n_frames), dtype=np.int32)
        else:
            frame_indices = np.linspace(0, total_frames - 1, self.n_frames, dtype=np.int32)
        
        frames = []
        for idx in frame_indices:
            cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
            ret, frame = cap.read()
            if not ret:
                frame = np.zeros((*self.img_size, 3), dtype=np.uint8)
            else:
                frame = cv2.resize(frame, self.img_size)
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(frame)
        
        cap.release()
        
        while len(frames) < self.n_frames:
            frames.append(frames[-1] if frames else np.zeros((*self.img_size, 3), dtype=np.uint8))
        
        return np.array(frames) / 255.0
    
    def on_epoch_end(self):
        np.random.shuffle(self.indices)

def create_model():
    model = Sequential([
        Input(shape=(N_FRAMES, *IMG_SIZE, 3)),
        Conv3D(32, kernel_size=(3, 3, 3), activation='relu', padding='same'),
        MaxPooling3D(pool_size=(1, 2, 2)),
        BatchNormalization(),
        
        Conv3D(64, kernel_size=(3, 3, 3), activation='relu', padding='same'),
        MaxPooling3D(pool_size=(1, 2, 2)),
        BatchNormalization(),
        
        Conv3D(128, kernel_size=(3, 3, 3), activation='relu', padding='same'),
        MaxPooling3D(pool_size=(2, 2, 2)),
        BatchNormalization(),
        
        Flatten(),
        Dense(256, activation='relu'),
        Dropout(0.5),
        Dense(1, activation='sigmoid')
    ])
    
    model.compile(optimizer='adam',
                 loss='binary_crossentropy',
                 metrics=['accuracy'])
    
    return model

def load_data():
    video_paths, labels = [], []
    for label_name in ["Fighting", "Normal"]:
        label_dir = os.path.join(DATA_DIR, label_name)
        if not os.path.isdir(label_dir):
            raise FileNotFoundError(f"Directory not found: {label_dir}")

        label = 1 if label_name.lower() == "fighting" else 0

        for file in os.listdir(label_dir):
            if file.lower().endswith((".mp4", ".mpeg", ".avi", ".mov")):
                full_path = os.path.join(label_dir, file)
                video_paths.append(full_path)
                labels.append(label)

    if not video_paths:
        raise ValueError(f"No videos found in {DATA_DIR}")

    print(f"[INFO] Total videos: {len(video_paths)} (Fighting: {labels.count(1)}, Normal: {labels.count(0)})")

    if len(set(labels)) > 1:
        return train_test_split(video_paths, labels, test_size=0.2, stratify=labels, random_state=42)
    else:
        print("[WARNING] Only one class found. Splitting without stratification.")
        return train_test_split(video_paths, labels, test_size=0.2, random_state=42)

def get_latest_checkpoint():
    if not os.path.exists(CHECKPOINT_DIR):
        os.makedirs(CHECKPOINT_DIR)
        return None
    
    checkpoints = [f for f in os.listdir(CHECKPOINT_DIR) 
                 if f.startswith('ckpt_') and f.endswith('.h5')]
    if not checkpoints:
        return None
    
    checkpoints.sort(key=lambda x: int(x.split('_')[1].split('.')[0]))
    return os.path.join(CHECKPOINT_DIR, checkpoints[-1])

def main():
    # Load and split data
    try:
        train_paths, val_paths, train_labels, val_labels = load_data()
    except Exception as e:
        print(f"[ERROR] Failed to load data: {str(e)}")
        return

    # Create data generators
    try:
        train_gen = VideoDataGenerator(train_paths, train_labels, BATCH_SIZE, N_FRAMES, IMG_SIZE)
        val_gen = VideoDataGenerator(val_paths, val_labels, BATCH_SIZE, N_FRAMES, IMG_SIZE)
    except Exception as e:
        print(f"[ERROR] Failed to create data generators: {str(e)}")
        return

    # Callbacks
    callbacks = [
        ModelCheckpoint(
            os.path.join(CHECKPOINT_DIR, 'ckpt_{epoch}.h5'),
            save_best_only=False,
            save_weights_only=False
        ),
        CSVLogger('training_log.csv', append=True),
        EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
    ]

    # Handle resume training
    initial_epoch = 0
    try:
        if RESUME_TRAINING:
            ckpt = get_latest_checkpoint()
            if ckpt:
                print(f"[INFO] Resuming training from checkpoint: {ckpt}")
                model = load_model(ckpt)
                initial_epoch = int(ckpt.split('_')[1].split('.')[0])
            else:
                print("[INFO] No checkpoint found, starting new training")
                model = create_model()
        else:
            model = create_model()
    except Exception as e:
        print(f"[ERROR] Failed to initialize model: {str(e)}")
        return

    # Display model summary
    model.summary()

    # Train model
    try:
        print("[INFO] Starting training...")
        history = model.fit(
            train_gen,
            validation_data=val_gen,
            epochs=EPOCHS,
            initial_epoch=initial_epoch,
            callbacks=callbacks,
            verbose=1
        )
    except Exception as e:
        print(f"[ERROR] Training failed: {str(e)}")
        traceback.print_exc()
    finally:
        model.save(OUTPUT_PATH)
        print("[INFO] Training completed. Model saved to final_model_2.h5")

if __name__ == "__main__":
    print("[INFO] Starting script...")
    main()
    print("[INFO] Script execution completed.")