File size: 8,840 Bytes
da07a7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import numpy as np
import cv2
import traceback
from collections import Counter
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import Sequence
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Input, Conv3D, MaxPooling3D, Flatten, Dense, Dropout, BatchNormalization
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, CSVLogger
import tensorflow as tf
# === CONFIG ===
DATA_DIR = "D:\\K_REPO\\ComV\\train"
N_FRAMES = 30
IMG_SIZE = (96, 96)
EPOCHS = 10
BATCH_SIZE = 14
CHECKPOINT_DIR = r"D:\K_REPO\ComV\AI_made\trainnig_output\checkpoint"
RESUME_TRAINING = 1
MIN_REQUIRED_FRAMES = 10
OUTPUT_PATH = r"D:\K_REPO\ComV\AI_made\trainnig_output\final_model_2.h5"
# Optimize OpenCV
cv2.setUseOptimized(True)
cv2.setNumThreads(8)
# === VIDEO DATA GENERATOR ===
class VideoDataGenerator(Sequence):
def __init__(self, video_paths, labels, batch_size, n_frames, img_size):
self.video_paths, self.labels = self._filter_invalid_videos(video_paths, labels)
self.batch_size = batch_size
self.n_frames = n_frames
self.img_size = img_size
self.indices = np.arange(len(self.video_paths))
print(f"[INFO] Final dataset size: {len(self.video_paths)} videos")
def _filter_invalid_videos(self, paths, labels):
valid_paths = []
valid_labels = []
for path, label in zip(paths, labels):
cap = cv2.VideoCapture(path)
if not cap.isOpened():
print(f"[WARNING] Could not open video: {path}")
continue
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
if total_frames < MIN_REQUIRED_FRAMES:
print(f"[WARNING] Skipping {path} - only {total_frames} frames (needs at least {MIN_REQUIRED_FRAMES})")
continue
valid_paths.append(path)
valid_labels.append(label)
return valid_paths, valid_labels
def __len__(self):
return int(np.ceil(len(self.video_paths) / self.batch_size))
def __getitem__(self, index):
batch_indices = self.indices[index*self.batch_size:(index+1)*self.batch_size]
X, y = [], []
for i in batch_indices:
path = self.video_paths[i]
label = self.labels[i]
try:
frames = self._load_video_frames(path)
X.append(frames)
y.append(label)
except Exception as e:
print(f"[WARNING] Error processing {path} - {str(e)}")
X.append(np.zeros((self.n_frames, *self.img_size, 3)))
y.append(label)
return np.array(X), np.array(y)
def _load_video_frames(self, path):
cap = cv2.VideoCapture(path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total_frames < self.n_frames:
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, self.n_frames), dtype=np.int32)
else:
frame_indices = np.linspace(0, total_frames - 1, self.n_frames, dtype=np.int32)
frames = []
for idx in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
ret, frame = cap.read()
if not ret:
frame = np.zeros((*self.img_size, 3), dtype=np.uint8)
else:
frame = cv2.resize(frame, self.img_size)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
cap.release()
while len(frames) < self.n_frames:
frames.append(frames[-1] if frames else np.zeros((*self.img_size, 3), dtype=np.uint8))
return np.array(frames) / 255.0
def on_epoch_end(self):
np.random.shuffle(self.indices)
def create_model():
model = Sequential([
Input(shape=(N_FRAMES, *IMG_SIZE, 3)),
Conv3D(32, kernel_size=(3, 3, 3), activation='relu', padding='same'),
MaxPooling3D(pool_size=(1, 2, 2)),
BatchNormalization(),
Conv3D(64, kernel_size=(3, 3, 3), activation='relu', padding='same'),
MaxPooling3D(pool_size=(1, 2, 2)),
BatchNormalization(),
Conv3D(128, kernel_size=(3, 3, 3), activation='relu', padding='same'),
MaxPooling3D(pool_size=(2, 2, 2)),
BatchNormalization(),
Flatten(),
Dense(256, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
return model
def load_data():
video_paths, labels = [], []
for label_name in ["Fighting", "Normal"]:
label_dir = os.path.join(DATA_DIR, label_name)
if not os.path.isdir(label_dir):
raise FileNotFoundError(f"Directory not found: {label_dir}")
label = 1 if label_name.lower() == "fighting" else 0
for file in os.listdir(label_dir):
if file.lower().endswith((".mp4", ".mpeg", ".avi", ".mov")):
full_path = os.path.join(label_dir, file)
video_paths.append(full_path)
labels.append(label)
if not video_paths:
raise ValueError(f"No videos found in {DATA_DIR}")
print(f"[INFO] Total videos: {len(video_paths)} (Fighting: {labels.count(1)}, Normal: {labels.count(0)})")
if len(set(labels)) > 1:
return train_test_split(video_paths, labels, test_size=0.2, stratify=labels, random_state=42)
else:
print("[WARNING] Only one class found. Splitting without stratification.")
return train_test_split(video_paths, labels, test_size=0.2, random_state=42)
def get_latest_checkpoint():
if not os.path.exists(CHECKPOINT_DIR):
os.makedirs(CHECKPOINT_DIR)
return None
checkpoints = [f for f in os.listdir(CHECKPOINT_DIR)
if f.startswith('ckpt_') and f.endswith('.h5')]
if not checkpoints:
return None
checkpoints.sort(key=lambda x: int(x.split('_')[1].split('.')[0]))
return os.path.join(CHECKPOINT_DIR, checkpoints[-1])
def main():
# Load and split data
try:
train_paths, val_paths, train_labels, val_labels = load_data()
except Exception as e:
print(f"[ERROR] Failed to load data: {str(e)}")
return
# Create data generators
try:
train_gen = VideoDataGenerator(train_paths, train_labels, BATCH_SIZE, N_FRAMES, IMG_SIZE)
val_gen = VideoDataGenerator(val_paths, val_labels, BATCH_SIZE, N_FRAMES, IMG_SIZE)
except Exception as e:
print(f"[ERROR] Failed to create data generators: {str(e)}")
return
# Callbacks
callbacks = [
ModelCheckpoint(
os.path.join(CHECKPOINT_DIR, 'ckpt_{epoch}.h5'),
save_best_only=False,
save_weights_only=False
),
CSVLogger('training_log.csv', append=True),
EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
]
# Handle resume training
initial_epoch = 0
try:
if RESUME_TRAINING:
ckpt = get_latest_checkpoint()
if ckpt:
print(f"[INFO] Resuming training from checkpoint: {ckpt}")
model = load_model(ckpt)
initial_epoch = int(ckpt.split('_')[1].split('.')[0])
else:
print("[INFO] No checkpoint found, starting new training")
model = create_model()
else:
model = create_model()
except Exception as e:
print(f"[ERROR] Failed to initialize model: {str(e)}")
return
# Display model summary
model.summary()
# Train model
try:
print("[INFO] Starting training...")
history = model.fit(
train_gen,
validation_data=val_gen,
epochs=EPOCHS,
initial_epoch=initial_epoch,
callbacks=callbacks,
verbose=1
)
except Exception as e:
print(f"[ERROR] Training failed: {str(e)}")
traceback.print_exc()
finally:
model.save(OUTPUT_PATH)
print("[INFO] Training completed. Model saved to final_model_2.h5")
if __name__ == "__main__":
print("[INFO] Starting script...")
main()
print("[INFO] Script execution completed.")
|