Spaces:
Sleeping
Sleeping
Anurag Bhardwaj
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,34 @@
|
|
1 |
-
import subprocess
|
2 |
-
import sys
|
3 |
-
|
4 |
-
def install(package):
|
5 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
6 |
-
|
7 |
-
# Attempt to import transformers and install if missing
|
8 |
-
try:
|
9 |
-
import transformers
|
10 |
-
except ModuleNotFoundError:
|
11 |
-
install("transformers")
|
12 |
-
import transformers
|
13 |
-
|
14 |
-
# Then proceed with your imports
|
15 |
-
from diffusers import StableDiffusionImg2ImgPipeline
|
16 |
import gradio as gr
|
17 |
import torch
|
|
|
18 |
from PIL import Image
|
19 |
|
20 |
-
# Load the
|
21 |
-
model_id = "nitrosocke/Ghibli-Diffusion"
|
22 |
-
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
23 |
-
# Use GPU if available, otherwise fall back to CPU
|
24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
def transform_image(input_image: Image.Image) -> Image.Image:
|
28 |
-
# Resize input image to 512x512 for consistency
|
29 |
input_image = input_image.resize((512, 512))
|
30 |
prompt = "ghibli style"
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
return output.images[0]
|
34 |
|
35 |
-
# Create Gradio interface: input is an image, output is the transformed image.
|
36 |
demo = gr.Interface(
|
37 |
fn=transform_image,
|
38 |
inputs=gr.Image(type="pil", label="Upload your portrait/photo"),
|
39 |
outputs=gr.Image(type="pil", label="Studio Ghibli Style Output"),
|
40 |
title="Studio Ghibli Style Converter",
|
41 |
-
description="Upload a portrait or photo
|
42 |
)
|
43 |
|
44 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionImg2ImgPipeline
|
4 |
from PIL import Image
|
5 |
|
6 |
+
# Load the pre-trained Studio Ghibli style model
|
7 |
+
model_id = "nitrosocke/Ghibli-Diffusion"
|
|
|
|
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
11 |
+
model_id, torch_dtype=torch.float16
|
12 |
+
).to(device)
|
13 |
|
14 |
def transform_image(input_image: Image.Image) -> Image.Image:
|
|
|
15 |
input_image = input_image.resize((512, 512))
|
16 |
prompt = "ghibli style"
|
17 |
+
output = pipe(
|
18 |
+
prompt=prompt,
|
19 |
+
image=input_image,
|
20 |
+
strength=0.75,
|
21 |
+
guidance_scale=7.5,
|
22 |
+
num_inference_steps=50,
|
23 |
+
)
|
24 |
return output.images[0]
|
25 |
|
|
|
26 |
demo = gr.Interface(
|
27 |
fn=transform_image,
|
28 |
inputs=gr.Image(type="pil", label="Upload your portrait/photo"),
|
29 |
outputs=gr.Image(type="pil", label="Studio Ghibli Style Output"),
|
30 |
title="Studio Ghibli Style Converter",
|
31 |
+
description="Upload a portrait or photo to transform it into a Studio Ghibli-style image.",
|
32 |
)
|
33 |
|
34 |
if __name__ == "__main__":
|