Anurag Bhardwaj commited on
Commit
165a80c
·
verified ·
1 Parent(s): 3d646b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -214
app.py CHANGED
@@ -1,220 +1,29 @@
1
- import sys
2
- import subprocess
3
- import importlib.util
4
- import os
5
-
6
- # List of required packages.
7
- required_packages = {
8
- "gradio": "gradio",
9
- "numpy": "numpy",
10
- "torch": "torch",
11
- "diffusers": "diffusers",
12
- "PIL": "pillow",
13
- "spaces": "spaces", # if this is a package available in your environment
14
- "transformers": "transformers",
15
- }
16
-
17
- def install_package(package_name):
18
- subprocess.check_call([sys.executable, "-m", "pip", "install", package_name])
19
-
20
- # Auto-install any missing packages.
21
- for mod, pkg in required_packages.items():
22
- if importlib.util.find_spec(mod) is None:
23
- print(f"Module {mod} not found, installing {pkg}...")
24
- install_package(pkg)
25
-
26
- # Explicitly import transformers to ensure it's loaded.
27
- import transformers
28
-
29
- import random
30
  import gradio as gr
31
- import numpy as np
32
- import spaces
33
  import torch
34
- from diffusers import DiffusionPipeline
35
  from PIL import Image
36
 
37
- device = "cuda" if torch.cuda.is_available() else "cpu"
38
-
39
- # Model identifiers.
40
- repo_id = "black-forest-labs/FLUX.1-dev"
41
- adapter_id = "alvarobartt/ghibli-characters-flux-lora"
42
-
43
- # Retrieve HF token from environment (if required to access gated repositories).
44
- hf_token = os.environ.get("HF_TOKEN", None)
45
-
46
- # Load the base model from the repository.
47
- pipeline = DiffusionPipeline.from_pretrained(
48
- repo_id,
49
- torch_dtype=torch.bfloat16,
50
- use_auth_token=hf_token # Only needed if the repo is gated.
 
 
 
 
 
 
51
  )
52
- pipeline.load_lora_weights(adapter_id)
53
- pipeline = pipeline.to(device)
54
-
55
- MAX_SEED = np.iinfo(np.int32).max
56
- MAX_IMAGE_SIZE = 1024
57
-
58
- @spaces.GPU(duration=80)
59
- def inference(
60
- prompt: str,
61
- seed: int,
62
- randomize_seed: bool,
63
- width: int,
64
- height: int,
65
- guidance_scale: float,
66
- num_inference_steps: int,
67
- lora_scale: float,
68
- progress: gr.Progress = gr.Progress(track_tqdm=True),
69
- ):
70
- if randomize_seed:
71
- seed = random.randint(0, MAX_SEED)
72
- generator = torch.Generator(device=device).manual_seed(seed)
73
-
74
- image = pipeline(
75
- prompt=prompt,
76
- guidance_scale=guidance_scale,
77
- num_inference_steps=num_inference_steps,
78
- width=width,
79
- height=height,
80
- generator=generator,
81
- joint_attention_kwargs={"scale": lora_scale},
82
- ).images[0]
83
-
84
- return image, seed
85
-
86
- examples = [
87
- (
88
- "Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet,"
89
- " standing heroically on a lush alien planet, vibrant flowers blooming around, soft"
90
- " sunlight illuminating the scene, a gentle breeze rustling the leaves"
91
- ),
92
- ]
93
-
94
- css = """
95
- #col-container {
96
- margin: 0 auto;
97
- max-width: 640px;
98
- }
99
- """
100
-
101
- with gr.Blocks(css=css) as demo:
102
- with gr.Column(elem_id="col-container"):
103
- gr.Markdown("# FLUX.1 Studio Ghibli LoRA")
104
- gr.Markdown(
105
- "[alvarobartt/ghibli-characters-flux-lora](https://huggingface.co/alvarobartt/ghibli-characters-flux-lora)"
106
- " is a LoRA fine-tune of [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)"
107
- " with [alvarobartt/ghibli-characters](https://huggingface.co/datasets/alvarobartt/ghibli-characters)."
108
- )
109
-
110
- with gr.Accordion("How to generate nice prompts?", open=False):
111
- gr.Markdown(
112
- "What worked best for me to generate high-quality prompts of well-known characters,"
113
- " was to prompt either [Claude 3 Haiku](https://claude.ai), [GPT4-o](https://chatgpt.com/),"
114
- " or [Perplexity](https://www.perplexity.ai/) with:\n\nYou are an"
115
- " expert prompt writer for diffusion text to image models, and you've been provided"
116
- " the following prompt template:\n\n\"Ghibli style [character description] with"
117
- " [distinctive features], [action or pose], [environment or background],"
118
- " [lighting or atmosphere], [additional details].\"\n\nCould you create a prompt"
119
- " to generate [CHARACTER NAME] as a Studio Ghibli character following that template? "
120
- "[MORE DETAILS IF NEEDED]\n"
121
- )
122
-
123
- with gr.Row():
124
- prompt = gr.Text(
125
- label="Prompt",
126
- show_label=False,
127
- max_lines=1,
128
- placeholder="Enter your prompt",
129
- container=False,
130
- )
131
-
132
- run_button = gr.Button("Run", scale=0)
133
-
134
- result = gr.Image(label="Result", show_label=False)
135
-
136
- with gr.Accordion("Advanced Settings", open=False):
137
- seed = gr.Slider(
138
- label="Seed",
139
- minimum=0,
140
- maximum=MAX_SEED,
141
- step=1,
142
- value=42,
143
- )
144
-
145
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
146
-
147
- with gr.Row():
148
- width = gr.Slider(
149
- label="Width",
150
- minimum=256,
151
- maximum=MAX_IMAGE_SIZE,
152
- step=32,
153
- value=1024,
154
- )
155
-
156
- height = gr.Slider(
157
- label="Height",
158
- minimum=256,
159
- maximum=MAX_IMAGE_SIZE,
160
- step=32,
161
- value=768,
162
- )
163
-
164
- with gr.Row():
165
- guidance_scale = gr.Slider(
166
- label="Guidance scale",
167
- minimum=0.0,
168
- maximum=10.0,
169
- step=0.1,
170
- value=3.5,
171
- )
172
-
173
- num_inference_steps = gr.Slider(
174
- label="Number of inference steps",
175
- minimum=1,
176
- maximum=50,
177
- step=1,
178
- value=30,
179
- )
180
-
181
- lora_scale = gr.Slider(
182
- label="LoRA scale",
183
- minimum=0.0,
184
- maximum=1.0,
185
- step=0.1,
186
- value=1.0,
187
- )
188
-
189
- gr.Examples(
190
- examples=examples,
191
- fn=lambda x: (Image.open("./example.jpg"), 42),
192
- inputs=[prompt],
193
- outputs=[result, seed],
194
- run_on_click=True,
195
- )
196
-
197
- gr.Markdown(
198
- "### Disclaimer\n\n"
199
- "License is non-commercial for both FLUX.1-dev and the Studio Ghibli dataset; "
200
- "but free to use for personal and non-commercial purposes."
201
- )
202
-
203
- gr.on(
204
- triggers=[run_button.click, prompt.submit],
205
- fn=inference,
206
- inputs=[
207
- prompt,
208
- seed,
209
- randomize_seed,
210
- width,
211
- height,
212
- guidance_scale,
213
- num_inference_steps,
214
- lora_scale,
215
- ],
216
- outputs=[result, seed],
217
- )
218
 
219
- demo.queue()
220
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from diffusers import StableDiffusionImg2ImgPipeline
 
3
  import torch
 
4
  from PIL import Image
5
 
6
+ # Load the fine-tuned Studio Ghibli style model
7
+ model_id = "nitrosocke/Ghibli-Diffusion" # This model is fine-tuned to mimic the Studio Ghibli aesthetic
8
+ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
9
+ pipe.to("cuda") # Ensure you have GPU support in your Space; if not, remove or change accordingly
10
+
11
+ def transform_image(input_image: Image.Image) -> Image.Image:
12
+ # Resize input to a standard size (e.g., 512x512)
13
+ input_image = input_image.resize((512, 512))
14
+ prompt = "ghibli style"
15
+ # 'strength' controls how much the input image is modified (0.0 to 1.0)
16
+ output = pipe(prompt=prompt, image=input_image, strength=0.75, guidance_scale=7.5)
17
+ return output.images[0]
18
+
19
+ # Create a Gradio interface: input is an image and output is the transformed image.
20
+ demo = gr.Interface(
21
+ fn=transform_image,
22
+ inputs=gr.Image(type="pil", label="Upload your portrait/photo"),
23
+ outputs=gr.Image(type="pil", label="Studio Ghibli Style Output"),
24
+ title="Studio Ghibli Style Converter",
25
+ description="Upload a portrait or photo and transform it into a Studio Ghibli-style image using a fine-tuned Stable Diffusion model."
26
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ if __name__ == "__main__":
29
+ demo.launch()