# app.py # ====== PATCH GRADIO_CLIENT UTILS TO HANDLE BOOLEAN SCHEMAS ====== import gradio_client.utils as gc_utils def patched_get_type(schema): if not isinstance(schema, dict): return "bool" if isinstance(schema, bool) else "unknown" if "const" in schema: return "const" return schema.get("type", "object") gc_utils.get_type = patched_get_type _original_json_schema_to_python_type = gc_utils._json_schema_to_python_type def patched_json_schema_to_python_type(schema, defs=None): if isinstance(schema, bool): return "bool" if not isinstance(schema, dict): return "unknown" try: return _original_json_schema_to_python_type(schema, defs) except Exception as e: return "unknown" gc_utils._json_schema_to_python_type = patched_json_schema_to_python_type # ====== END PATCHS ====== import spaces import gradio as gr from PIL import Image import monkeypatch # This file should be present to patch from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref from src.unet_hacked_tryon import UNet2DConditionModel from transformers import ( CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPTextModel, CLIPTextModelWithProjection, ) from diffusers import DDPMScheduler, AutoencoderKL from typing import List import torch import os from transformers import AutoTokenizer import numpy as np from utils_mask import get_mask_location from torchvision import transforms import apply_net from preprocess.humanparsing.run_parsing import Parsing from preprocess.openpose.run_openpose import OpenPose from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation from torchvision.transforms.functional import to_pil_image def pil_to_binary_mask(pil_image, threshold=0): np_image = np.array(pil_image) grayscale_image = Image.fromarray(np_image).convert("L") binary_mask = np.array(grayscale_image) > threshold mask = np.zeros(binary_mask.shape, dtype=np.uint8) for i in range(binary_mask.shape[0]): for j in range(binary_mask.shape[1]): if binary_mask[i, j]: mask[i, j] = 1 mask = (mask * 255).astype(np.uint8) output_mask = Image.fromarray(mask) return output_mask base_path = 'yisol/IDM-VTON' example_path = os.path.join(os.path.dirname(__file__), 'example') unet = UNet2DConditionModel.from_pretrained( base_path, subfolder="unet", torch_dtype=torch.float16, ) unet.requires_grad_(False) tokenizer_one = AutoTokenizer.from_pretrained( base_path, subfolder="tokenizer", revision=None, use_fast=False, ) tokenizer_two = AutoTokenizer.from_pretrained( base_path, subfolder="tokenizer_2", revision=None, use_fast=False, ) noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") text_encoder_one = CLIPTextModel.from_pretrained( base_path, subfolder="text_encoder", torch_dtype=torch.float16, ) text_encoder_two = CLIPTextModelWithProjection.from_pretrained( base_path, subfolder="text_encoder_2", torch_dtype=torch.float16, ) image_encoder = CLIPVisionModelWithProjection.from_pretrained( base_path, subfolder="image_encoder", torch_dtype=torch.float16, ) vae = AutoencoderKL.from_pretrained( base_path, subfolder="vae", torch_dtype=torch.float16, ) # "stabilityai/stable-diffusion-xl-base-1.0", UNet_Encoder = UNet2DConditionModel_ref.from_pretrained( base_path, subfolder="unet_encoder", torch_dtype=torch.float16, ) parsing_model = Parsing(0) openpose_model = OpenPose(0) UNet_Encoder.requires_grad_(False) image_encoder.requires_grad_(False) vae.requires_grad_(False) unet.requires_grad_(False) text_encoder_one.requires_grad_(False) text_encoder_two.requires_grad_(False) tensor_transfrom = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ]) pipe = TryonPipeline.from_pretrained( base_path, unet=unet, vae=vae, feature_extractor=CLIPImageProcessor(), text_encoder=text_encoder_one, text_encoder_2=text_encoder_two, tokenizer=tokenizer_one, tokenizer_2=tokenizer_two, scheduler=noise_scheduler, image_encoder=image_encoder, torch_dtype=torch.float16, ) pipe.unet_encoder = UNet_Encoder @spaces.GPU def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, category): """虚拟试衣主函数 Args: dict: 输入图像字典,包含背景和图层信息 garm_img: 服装图片 garment_des: 服装描述文本 is_checked: 是否启用自动检测模式 is_checked_crop: 是否启用图像裁剪 denoise_steps: 去噪步数 seed: 随机种子 category: 服装类别 Returns: 生成的试衣结果图像和灰度遮罩 """ device = "cuda" openpose_model.preprocessor.body_estimation.model.to(device) pipe.to(device) pipe.unet_encoder.to(device) # 2. 图像预处理 - 调整服装和人物图像大小 garm_img = garm_img.convert("RGB").resize((768, 1024)) human_img_orig = dict["background"].convert("RGB") orig_size = human_img_orig.size # 保存原始尺寸 # 2.1 如果启用裁剪,按3:4比例裁剪人物图像 if is_checked_crop: width, height = human_img_orig.size target_width = int(min(width, height * (3 / 4))) target_height = int(min(height, width * (4 / 3))) left = (width - target_width) / 2 top = (height - target_height) / 2 right = (width + target_width) / 2 bottom = (height + target_height) / 2 cropped_img = human_img_orig.crop((left, top, right, bottom)) crop_size = cropped_img.size human_img = cropped_img.resize((768, 1024)) else: human_img = human_img_orig.resize((768, 1024)) # 3. 生成遮罩 if is_checked: # 3.1 使用自动检测模式 keypoints = openpose_model(human_img.resize((384, 512))) model_parse, _ = parsing_model(human_img.resize((384, 512))) mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints) mask = mask.resize((768, 1024)) else: # 3.2 使用手动提供的遮罩 mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024))) # 3.3 生成灰度遮罩 mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img) mask_gray = to_pil_image((mask_gray + 1.0) / 2.0) # 4. 姿态处理 human_img_arg = _apply_exif_orientation(human_img.resize((384, 512))) human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") args = apply_net.create_argument_parser().parse_args(( 'show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda' )) pose_img = args.func(args, human_img_arg) pose_img = pose_img[:, :, ::-1] pose_img = Image.fromarray(pose_img).resize((768, 1024)) # 5. AI生成过程 with torch.no_grad(): with torch.cuda.amp.autocast(): # 5.1 生成正面提示词嵌入 prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), the model is wearing " + garment_des negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch" with torch.inference_mode(): ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt( prompt, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt, ) # 5.2 生成服装相关的提示词嵌入 prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), a photo of " + garment_des negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch" if not isinstance(prompt, List): prompt = [prompt] * 1 if not isinstance(negative_prompt, List): negative_prompt = [negative_prompt] * 1 ( prompt_embeds_c, _, _, _, ) = pipe.encode_prompt( prompt, num_images_per_prompt=1, do_classifier_free_guidance=False, negative_prompt=negative_prompt, ) # 5.3 准备输入张量 pose_tensor = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16) garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16) generator = torch.Generator(device).manual_seed(seed) if seed is not None else None # 6. 使用Stable Diffusion XL管道生成图像 images = pipe( prompt_embeds=prompt_embeds.to(device, torch.float16), negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16), pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16), negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16), num_inference_steps=denoise_steps, generator=generator, strength=1.0, pose_img=pose_tensor.to(device, torch.float16), text_embeds_cloth=prompt_embeds_c.to(device, torch.float16), cloth=garm_tensor.to(device, torch.float16), mask_image=mask, image=human_img, height=1024, width=768, ip_adapter_image=garm_img.resize((768, 1024)), guidance_scale=2.0, )[0] # 7. 后处理 - 处理裁剪情况并返回结果 if is_checked_crop: return images[0].resize(crop_size), mask_gray.resize(crop_size) else: return images[0].resize(orig_size), mask_gray.resize(orig_size) # Setup example paths and lists garm_list = os.listdir(os.path.join(example_path, "cloth")) garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list] human_list = os.listdir(os.path.join(example_path, "human")) human_list_path = [os.path.join(example_path, "human", human) for human in human_list] human_ex_list = [] for ex_human in human_list_path: ex_dict = {} ex_dict['background'] = ex_human ex_dict['layers'] = None ex_dict['composite'] = None human_ex_list.append(ex_dict) custom_css = """ :root { --primary: #9D4BFF; --secondary: #4A148C; --accent: #E0AAFF; } body { font-family: 'Helvetica Neue', sans-serif; } .purple-btn { background: var(--primary) !important; color: white !important; border: none !important; padding: 12px 24px !important; border-radius: 8px !important; } .purple-btn:hover { background: var(--secondary) !important; } .section-title { color: var(--secondary) !important; font-weight: 600 !important; margin-bottom: 10px !important; } """ image_blocks = gr.Blocks(css=custom_css).queue() with image_blocks as demo: gr.Markdown("## 👶 Baby Virtual Try-On Studio", elem_classes=["section-title"]) # Coefficient Section (係數區塊) with gr.Column(): try_button = gr.Button( value="✨ Generate Virtual Try-On", elem_classes=["purple-btn"], scale=2 ) with gr.Accordion(label="Advanced Settings", open=False): with gr.Row(): denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1) seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=50) # Changing Section (更衣區塊) with gr.Row(): with gr.Column(): gr.Markdown("### 👶 Upload Baby Photo", elem_classes=["section-title"]) imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True) with gr.Row(): is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)", value=True) with gr.Row(): category = gr.Dropdown( choices=["upper_body", "lower_body", "dresses"], label="Category", value="upper_body" ) with gr.Row(): is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing", value=False) example = gr.Examples( inputs=imgs, examples_per_page=15, examples=human_ex_list ) with gr.Column(): gr.Markdown("### 👕 Upload Clothing", elem_classes=["section-title"]) garm_img = gr.Image(label="Garment", sources='upload', type="pil") with gr.Row(elem_id="prompt-container"): prompt = gr.Textbox(label="Description of garment", placeholder="Short Sleeve Round Neck T-shirts", show_label=True, elem_id="prompt") example = gr.Examples( inputs=garm_img, examples_per_page=30, examples=garm_list_path ) with gr.Column(): image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False) with gr.Column(): masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False) with gr.Row(): gr.Markdown("## Links") try_button.click( fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed, category], outputs=[image_out, masked_img], api_name='tryon' ) image_blocks.launch()