Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,511 Bytes
fbefd1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# app.py
# ====== PATCH GRADIO_CLIENT UTILS TO HANDLE BOOLEAN SCHEMAS ======
import gradio_client.utils as gc_utils
def patched_get_type(schema):
if not isinstance(schema, dict):
return "bool" if isinstance(schema, bool) else "unknown"
if "const" in schema:
return "const"
return schema.get("type", "object")
gc_utils.get_type = patched_get_type
_original_json_schema_to_python_type = gc_utils._json_schema_to_python_type
def patched_json_schema_to_python_type(schema, defs=None):
if isinstance(schema, bool):
return "bool"
if not isinstance(schema, dict):
return "unknown"
try:
return _original_json_schema_to_python_type(schema, defs)
except Exception as e:
return "unknown"
gc_utils._json_schema_to_python_type = patched_json_schema_to_python_type
# ====== END PATCHS ======
import spaces
import gradio as gr
from PIL import Image
import monkeypatch # This file should be present to patch
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler, AutoencoderKL
from typing import List
import torch
import os
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image)
grayscale_image = Image.fromarray(np_image).convert("L")
binary_mask = np.array(grayscale_image) > threshold
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
for i in range(binary_mask.shape[0]):
for j in range(binary_mask.shape[1]):
if binary_mask[i, j]:
mask[i, j] = 1
mask = (mask * 255).astype(np.uint8)
output_mask = Image.fromarray(mask)
return output_mask
base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')
unet = UNet2DConditionModel.from_pretrained(
base_path,
subfolder="unet",
torch_dtype=torch.float16,
)
unet.requires_grad_(False)
tokenizer_one = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer_2",
revision=None,
use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(
base_path,
subfolder="text_encoder",
torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
base_path,
subfolder="text_encoder_2",
torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
base_path,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
vae = AutoencoderKL.from_pretrained(
base_path,
subfolder="vae",
torch_dtype=torch.float16,
)
# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
base_path,
subfolder="unet_encoder",
torch_dtype=torch.float16,
)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor=CLIPImageProcessor(),
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
tokenizer=tokenizer_one,
tokenizer_2=tokenizer_two,
scheduler=noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder
@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, category):
"""虚拟试衣主函数
Args:
dict: 输入图像字典,包含背景和图层信息
garm_img: 服装图片
garment_des: 服装描述文本
is_checked: 是否启用自动检测模式
is_checked_crop: 是否启用图像裁剪
denoise_steps: 去噪步数
seed: 随机种子
category: 服装类别
Returns:
生成的试衣结果图像和灰度遮罩
"""
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
# 2. 图像预处理 - 调整服装和人物图像大小
garm_img = garm_img.convert("RGB").resize((768, 1024))
human_img_orig = dict["background"].convert("RGB")
orig_size = human_img_orig.size # 保存原始尺寸
# 2.1 如果启用裁剪,按3:4比例裁剪人物图像
if is_checked_crop:
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
top = (height - target_height) / 2
right = (width + target_width) / 2
bottom = (height + target_height) / 2
cropped_img = human_img_orig.crop((left, top, right, bottom))
crop_size = cropped_img.size
human_img = cropped_img.resize((768, 1024))
else:
human_img = human_img_orig.resize((768, 1024))
# 3. 生成遮罩
if is_checked:
# 3.1 使用自动检测模式
keypoints = openpose_model(human_img.resize((384, 512)))
model_parse, _ = parsing_model(human_img.resize((384, 512)))
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
mask = mask.resize((768, 1024))
else:
# 3.2 使用手动提供的遮罩
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
# 3.3 生成灰度遮罩
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
# 4. 姿态处理
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args((
'show',
'./configs/densepose_rcnn_R_50_FPN_s1x.yaml',
'./ckpt/densepose/model_final_162be9.pkl',
'dp_segm',
'-v',
'--opts',
'MODEL.DEVICE',
'cuda'
))
pose_img = args.func(args, human_img_arg)
pose_img = pose_img[:, :, ::-1]
pose_img = Image.fromarray(pose_img).resize((768, 1024))
# 5. AI生成过程
with torch.no_grad():
with torch.cuda.amp.autocast():
# 5.1 生成正面提示词嵌入
prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), the model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
# 5.2 生成服装相关的提示词嵌入
prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), a photo of " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
if not isinstance(prompt, List):
prompt = [prompt] * 1
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * 1
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
# 5.3 准备输入张量
pose_tensor = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
# 6. 使用Stable Diffusion XL管道生成图像
images = pipe(
prompt_embeds=prompt_embeds.to(device, torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
num_inference_steps=denoise_steps,
generator=generator,
strength=1.0,
pose_img=pose_tensor.to(device, torch.float16),
text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
cloth=garm_tensor.to(device, torch.float16),
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image=garm_img.resize((768, 1024)),
guidance_scale=2.0,
)[0]
# 7. 后处理 - 处理裁剪情况并返回结果
if is_checked_crop:
return images[0].resize(crop_size), mask_gray.resize(crop_size)
else:
return images[0].resize(orig_size), mask_gray.resize(orig_size)
# Setup example paths and lists
garm_list = os.listdir(os.path.join(example_path, "cloth"))
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path, "human"))
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
human_ex_list = []
for ex_human in human_list_path:
ex_dict = {}
ex_dict['background'] = ex_human
ex_dict['layers'] = None
ex_dict['composite'] = None
human_ex_list.append(ex_dict)
custom_css = """
:root {
--primary: #9D4BFF;
--secondary: #4A148C;
--accent: #E0AAFF;
}
body {
font-family: 'Helvetica Neue', sans-serif;
}
.purple-btn {
background: var(--primary) !important;
color: white !important;
border: none !important;
padding: 12px 24px !important;
border-radius: 8px !important;
}
.purple-btn:hover {
background: var(--secondary) !important;
}
.section-title {
color: var(--secondary) !important;
font-weight: 600 !important;
margin-bottom: 10px !important;
}
"""
image_blocks = gr.Blocks(css=custom_css).queue()
with image_blocks as demo:
gr.Markdown("## 👶 Baby Virtual Try-On Studio", elem_classes=["section-title"])
# Coefficient Section (係數區塊)
with gr.Column():
try_button = gr.Button(
value="✨ Generate Virtual Try-On",
elem_classes=["purple-btn"],
scale=2
)
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row():
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=50)
# Changing Section (更衣區塊)
with gr.Row():
with gr.Column():
gr.Markdown("### 👶 Upload Baby Photo", elem_classes=["section-title"])
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
with gr.Row():
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)", value=True)
with gr.Row():
category = gr.Dropdown(
choices=["upper_body", "lower_body", "dresses"],
label="Category",
value="upper_body"
)
with gr.Row():
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing", value=False)
example = gr.Examples(
inputs=imgs,
examples_per_page=15,
examples=human_ex_list
)
with gr.Column():
gr.Markdown("### 👕 Upload Clothing", elem_classes=["section-title"])
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
with gr.Row(elem_id="prompt-container"):
prompt = gr.Textbox(label="Description of garment", placeholder="Short Sleeve Round Neck T-shirts", show_label=True, elem_id="prompt")
example = gr.Examples(
inputs=garm_img,
examples_per_page=30,
examples=garm_list_path
)
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
with gr.Column():
masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
with gr.Row():
gr.Markdown("## Links")
try_button.click(
fn=start_tryon,
inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed, category],
outputs=[image_out, masked_img],
api_name='tryon'
)
image_blocks.launch()
|