File size: 14,511 Bytes
fbefd1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# app.py

# ====== PATCH GRADIO_CLIENT UTILS TO HANDLE BOOLEAN SCHEMAS ======
import gradio_client.utils as gc_utils

def patched_get_type(schema):
    if not isinstance(schema, dict):
        return "bool" if isinstance(schema, bool) else "unknown"
    if "const" in schema:
        return "const"
    return schema.get("type", "object")
gc_utils.get_type = patched_get_type

_original_json_schema_to_python_type = gc_utils._json_schema_to_python_type
def patched_json_schema_to_python_type(schema, defs=None):
    if isinstance(schema, bool):
        return "bool"
    if not isinstance(schema, dict):
        return "unknown"
    try:
        return _original_json_schema_to_python_type(schema, defs)
    except Exception as e:
        return "unknown"
gc_utils._json_schema_to_python_type = patched_json_schema_to_python_type
# ====== END PATCHS ======

import spaces
import gradio as gr
from PIL import Image
import monkeypatch  # This file should be present to patch 
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPTextModel,
    CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler, AutoencoderKL
from typing import List

import torch
import os
from transformers import AutoTokenizer

import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image

def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image)
    grayscale_image = Image.fromarray(np_image).convert("L")
    binary_mask = np.array(grayscale_image) > threshold
    mask = np.zeros(binary_mask.shape, dtype=np.uint8)
    for i in range(binary_mask.shape[0]):
        for j in range(binary_mask.shape[1]):
            if binary_mask[i, j]:
                mask[i, j] = 1
    mask = (mask * 255).astype(np.uint8)
    output_mask = Image.fromarray(mask)
    return output_mask

base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')

unet = UNet2DConditionModel.from_pretrained(
    base_path,
    subfolder="unet",
    torch_dtype=torch.float16,
)
unet.requires_grad_(False)

tokenizer_one = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer",
    revision=None,
    use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
    base_path,
    subfolder="tokenizer_2",
    revision=None,
    use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")

text_encoder_one = CLIPTextModel.from_pretrained(
    base_path,
    subfolder="text_encoder",
    torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
    base_path,
    subfolder="text_encoder_2",
    torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    base_path,
    subfolder="image_encoder",
    torch_dtype=torch.float16,
)
vae = AutoencoderKL.from_pretrained(
    base_path,
    subfolder="vae",
    torch_dtype=torch.float16,
)

# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
    base_path,
    subfolder="unet_encoder",
    torch_dtype=torch.float16,
)

parsing_model = Parsing(0)
openpose_model = OpenPose(0)

UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)

tensor_transfrom = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5], [0.5]),
])

pipe = TryonPipeline.from_pretrained(
    base_path,
    unet=unet,
    vae=vae,
    feature_extractor=CLIPImageProcessor(),
    text_encoder=text_encoder_one,
    text_encoder_2=text_encoder_two,
    tokenizer=tokenizer_one,
    tokenizer_2=tokenizer_two,
    scheduler=noise_scheduler,
    image_encoder=image_encoder,
    torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder

@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, category):
    """虚拟试衣主函数
    Args:
        dict: 输入图像字典,包含背景和图层信息
        garm_img: 服装图片
        garment_des: 服装描述文本
        is_checked: 是否启用自动检测模式
        is_checked_crop: 是否启用图像裁剪
        denoise_steps: 去噪步数
        seed: 随机种子
        category: 服装类别
    Returns:
        生成的试衣结果图像和灰度遮罩
    """
    device = "cuda"
    openpose_model.preprocessor.body_estimation.model.to(device)
    pipe.to(device)
    pipe.unet_encoder.to(device)

    # 2. 图像预处理 - 调整服装和人物图像大小
    garm_img = garm_img.convert("RGB").resize((768, 1024))
    human_img_orig = dict["background"].convert("RGB")
    orig_size = human_img_orig.size  # 保存原始尺寸

    # 2.1 如果启用裁剪,按3:4比例裁剪人物图像
    if is_checked_crop:
        width, height = human_img_orig.size
        target_width = int(min(width, height * (3 / 4)))
        target_height = int(min(height, width * (4 / 3)))
        left = (width - target_width) / 2
        top = (height - target_height) / 2
        right = (width + target_width) / 2
        bottom = (height + target_height) / 2
        cropped_img = human_img_orig.crop((left, top, right, bottom))
        crop_size = cropped_img.size
        human_img = cropped_img.resize((768, 1024))
    else:
        human_img = human_img_orig.resize((768, 1024))

    # 3. 生成遮罩
    if is_checked:
        # 3.1 使用自动检测模式
        keypoints = openpose_model(human_img.resize((384, 512)))
        model_parse, _ = parsing_model(human_img.resize((384, 512)))
        mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints)
        mask = mask.resize((768, 1024))
    else:
        # 3.2 使用手动提供的遮罩
        mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))

    # 3.3 生成灰度遮罩
    mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
    mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)

    # 4. 姿态处理
    human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
    args = apply_net.create_argument_parser().parse_args((
        'show',
        './configs/densepose_rcnn_R_50_FPN_s1x.yaml',
        './ckpt/densepose/model_final_162be9.pkl',
        'dp_segm',
        '-v',
        '--opts',
        'MODEL.DEVICE',
        'cuda'
    ))
    pose_img = args.func(args, human_img_arg)
    pose_img = pose_img[:, :, ::-1]
    pose_img = Image.fromarray(pose_img).resize((768, 1024))

    # 5. AI生成过程
    with torch.no_grad():
        with torch.cuda.amp.autocast():
            # 5.1 生成正面提示词嵌入
            prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), the model is wearing " + garment_des
            negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
            with torch.inference_mode():
                (
                    prompt_embeds,
                    negative_prompt_embeds,
                    pooled_prompt_embeds,
                    negative_pooled_prompt_embeds,
                ) = pipe.encode_prompt(
                    prompt,
                    num_images_per_prompt=1,
                    do_classifier_free_guidance=True,
                    negative_prompt=negative_prompt,
                )

                # 5.2 生成服装相关的提示词嵌入
                prompt = "((best quality, masterpiece, ultra-detailed, high quality photography, photo realistic)), a photo of " + garment_des
                negative_prompt = "monochrome, lowres, bad anatomy, worst quality, normal quality, low quality, blurry, jpeg artifacts, sketch"
                if not isinstance(prompt, List):
                    prompt = [prompt] * 1
                if not isinstance(negative_prompt, List):
                    negative_prompt = [negative_prompt] * 1

                (
                    prompt_embeds_c,
                    _,
                    _,
                    _,
                ) = pipe.encode_prompt(
                    prompt,
                    num_images_per_prompt=1,
                    do_classifier_free_guidance=False,
                    negative_prompt=negative_prompt,
                )

                # 5.3 准备输入张量
                pose_tensor = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
                garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
                generator = torch.Generator(device).manual_seed(seed) if seed is not None else None

                # 6. 使用Stable Diffusion XL管道生成图像
                images = pipe(
                    prompt_embeds=prompt_embeds.to(device, torch.float16),
                    negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
                    pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
                    negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
                    num_inference_steps=denoise_steps,
                    generator=generator,
                    strength=1.0,
                    pose_img=pose_tensor.to(device, torch.float16),
                    text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
                    cloth=garm_tensor.to(device, torch.float16),
                    mask_image=mask,
                    image=human_img,
                    height=1024,
                    width=768,
                    ip_adapter_image=garm_img.resize((768, 1024)),
                    guidance_scale=2.0,
                )[0]

    # 7. 后处理 - 处理裁剪情况并返回结果
    if is_checked_crop:
        return images[0].resize(crop_size), mask_gray.resize(crop_size)
    else:
        return images[0].resize(orig_size), mask_gray.resize(orig_size)

# Setup example paths and lists
garm_list = os.listdir(os.path.join(example_path, "cloth"))
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]

human_list = os.listdir(os.path.join(example_path, "human"))
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]

human_ex_list = []
for ex_human in human_list_path:
    ex_dict = {}
    ex_dict['background'] = ex_human
    ex_dict['layers'] = None
    ex_dict['composite'] = None
    human_ex_list.append(ex_dict)

custom_css = """
:root {
    --primary: #9D4BFF;
    --secondary: #4A148C;
    --accent: #E0AAFF;
}

body {
    font-family: 'Helvetica Neue', sans-serif;
}

.purple-btn {
    background: var(--primary) !important;
    color: white !important;
    border: none !important;
    padding: 12px 24px !important;
    border-radius: 8px !important;
}

.purple-btn:hover {
    background: var(--secondary) !important;
}

.section-title {
    color: var(--secondary) !important;
    font-weight: 600 !important;
    margin-bottom: 10px !important;
}
"""

image_blocks = gr.Blocks(css=custom_css).queue()
with image_blocks as demo:
    gr.Markdown("## 👶 Baby Virtual Try-On Studio", elem_classes=["section-title"])
    
    # Coefficient Section (係數區塊)
    with gr.Column():
        try_button = gr.Button(
            value="✨ Generate Virtual Try-On", 
            elem_classes=["purple-btn"],
            scale=2
        )
        with gr.Accordion(label="Advanced Settings", open=False):
            with gr.Row():
                denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
                seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=50)
    
    # Changing Section (更衣區塊)
    with gr.Row():
        with gr.Column():
            gr.Markdown("### 👶 Upload Baby Photo", elem_classes=["section-title"])
            imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
            with gr.Row():
                is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)", value=True)
            with gr.Row():
                category = gr.Dropdown(
                    choices=["upper_body", "lower_body", "dresses"],
                    label="Category",
                    value="upper_body"
                )
            with gr.Row():
                is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing", value=False)
            example = gr.Examples(
                inputs=imgs,
                examples_per_page=15,
                examples=human_ex_list
            )
    
        with gr.Column():
            gr.Markdown("### 👕 Upload Clothing", elem_classes=["section-title"])
            garm_img = gr.Image(label="Garment", sources='upload', type="pil")
            with gr.Row(elem_id="prompt-container"):
                prompt = gr.Textbox(label="Description of garment", placeholder="Short Sleeve Round Neck T-shirts", show_label=True, elem_id="prompt")
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=30,
                examples=garm_list_path
            )
    
        with gr.Column():
            image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
        with gr.Column():
            masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
    
    with gr.Row():
        gr.Markdown("## Links")
    
    try_button.click(
        fn=start_tryon,
        inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed, category],
        outputs=[image_out, masked_img],
        api_name='tryon'
    )

image_blocks.launch()