Experiment / app.py
Kidbea's picture
new
3c6bbec
import os
import gradio as gr
import torch
import ftfy
import spaces
from diffusers import DiffusionPipeline
# Read token and optional model override from environment
token = os.environ.get("HUGGINGFACE_TOKEN")
if not token:
raise ValueError("Environment variable HUGGINGFACE_TOKEN is not set.")
# Use the Diffusers-ready model repository by default
model_id = os.environ.get("WAN_MODEL_ID", "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers")
@spaces.GPU # GPU is only activated when this function is called
def generate_video(image, prompt, num_frames=16, steps=25, guidance_scale=7.5):
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Load pipeline inside the GPU-allocated function
pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
trust_remote_code=True,
use_auth_token=token
).to("cuda")
pipe.enable_attention_slicing()
# Generate video
output = pipe(
prompt=prompt,
image=image,
num_inference_steps=steps,
guidance_scale=guidance_scale,
num_frames=num_frames
)
return output.videos
# Gradio UI
def main():
with gr.Blocks() as demo:
gr.Markdown("# Wan2.1 Image-to-Video Demo (ZeroGPU Edition)")
with gr.Row():
img_in = gr.Image(type="pil", label="Input Image")
txt_p = gr.Textbox(label="Prompt")
btn = gr.Button("Generate Video")
out = gr.Video(label="Generated Video")
btn.click(fn=generate_video, inputs=[img_in, txt_p], outputs=out)
return demo
if __name__ == "__main__":
main().launch()