Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
from PIL import Image
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
-
|
|
|
7 |
|
8 |
-
def
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Gradio UI
|
19 |
gr.Interface(
|
20 |
-
fn=
|
21 |
-
inputs=gr.Image(type="pil", label="Upload
|
22 |
-
outputs="
|
23 |
title="Semantic Segmentation with SegFormer",
|
24 |
-
description="ใช้โมเดล
|
25 |
).launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
|
3 |
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
|
7 |
+
# โหลดโมเดล SegFormer
|
8 |
+
processor = AutoImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
|
9 |
+
model = AutoModelForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
|
10 |
|
11 |
+
def segment(image):
|
12 |
+
inputs = processor(images=image, return_tensors="pt")
|
13 |
+
with torch.no_grad():
|
14 |
+
outputs = model(**inputs)
|
15 |
+
logits = outputs.logits # (1, num_labels, H, W)
|
16 |
+
|
17 |
+
upsampled_logits = torch.nn.functional.interpolate(
|
18 |
+
logits,
|
19 |
+
size=image.size[::-1], # (H, W)
|
20 |
+
mode="bilinear",
|
21 |
+
align_corners=False,
|
22 |
+
)[0]
|
23 |
+
|
24 |
+
predicted = upsampled_logits.argmax(0).numpy()
|
25 |
+
|
26 |
+
# สร้างภาพ segmentation mask
|
27 |
+
colored_mask = Image.fromarray(segmentation_to_color(predicted))
|
28 |
+
|
29 |
+
return colored_mask
|
30 |
+
|
31 |
+
# แปลง mask เป็นสี (แบบง่าย)
|
32 |
+
def segmentation_to_color(segmentation):
|
33 |
+
num_classes = np.max(segmentation) + 1
|
34 |
+
colors = np.random.randint(0, 255, size=(num_classes, 3), dtype=np.uint8)
|
35 |
+
return colors[segmentation]
|
36 |
|
37 |
# Gradio UI
|
38 |
gr.Interface(
|
39 |
+
fn=segment,
|
40 |
+
inputs=gr.Image(type="pil", label="Upload an image"),
|
41 |
+
outputs=gr.Image(type="pil", label="Segmentation Mask"),
|
42 |
title="Semantic Segmentation with SegFormer",
|
43 |
+
description="ใช้โมเดล NVIDIA SegFormer สำหรับ Semantic Segmentation"
|
44 |
).launch()
|