Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
|
6 |
+
model_path = "vehicle_classification_model.keras"
|
7 |
+
try:
|
8 |
+
model = load_model(model_path)
|
9 |
+
except OSError as e:
|
10 |
+
print("Error loading model:", e)
|
11 |
+
|
12 |
+
class_labels = ['Auto Rickshaw', 'Bike', 'Car', 'Motorcycle', 'Plane', 'Ship', 'Train']
|
13 |
+
|
14 |
+
def predict_vehicle(img):
|
15 |
+
img = img.resize((224, 224))
|
16 |
+
img = np.array(img) / 255.0
|
17 |
+
img = np.expand_dims(img, axis=0)
|
18 |
+
|
19 |
+
predictions = model.predict(img)
|
20 |
+
predicted_class = np.argmax(predictions, axis=1)[0]
|
21 |
+
confidence = np.max(predictions, axis=1)[0]
|
22 |
+
predicted_label = class_labels[predicted_class]
|
23 |
+
|
24 |
+
return {"vehicle_type": predicted_label, "confidence": float(confidence)}
|
25 |
+
|
26 |
+
gr.Interface(
|
27 |
+
fn=predict_vehicle,
|
28 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
29 |
+
outputs=gr.JSON(label="Prediction Result"),
|
30 |
+
title="Vehicle Classification System",
|
31 |
+
description="Upload an image of a vehicle and the model will predict its type.",
|
32 |
+
live=True
|
33 |
+
).launch()
|