import streamlit as st import torchvision.transforms as transforms import torch import io import os from fpdf import FPDF import nest_asyncio nest_asyncio.apply() device='cuda' if torch.cuda.is_available() else 'cpu' st.set_page_config(page_title="DermBOT", page_icon="🧬", layout="centered") import torch from torch import nn from torchvision import transforms from PIL import Image from transformers import LlamaForCausalLM, LlamaTokenizer, BertModel, BertConfig from eva_vit import create_eva_vit_g import requests from io import BytesIO import os from huggingface_hub import hf_hub_download from transformers import BitsAndBytesConfig from accelerate import init_empty_weights import warnings from transformers import logging import torch from torch.cuda.amp import autocast from SkinGPT import SkinGPTClassifier # Set default dtypes torch.set_default_dtype(torch.float32) # Main computations in float32 MODEL_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32 import warnings warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=UserWarning) logging.set_verbosity_error() token = os.getenv("HF_TOKEN") if not token: raise ValueError("Hugging Face token not found in environment variables") import warnings warnings.filterwarnings("ignore") def get_classifier(): return SkinGPTClassifier() classifier = get_classifier() # === Session Init === if "messages" not in st.session_state: st.session_state.messages = [] # === PDF Export === def export_chat_to_pdf(messages): pdf = FPDF() pdf.add_page() pdf.set_font("Arial", size=12) for msg in messages: role = "You" if msg["role"] == "user" else "AI" pdf.multi_cell(0, 10, f"{role}: {msg['content']}\n") buf = io.BytesIO() pdf.output(buf) buf.seek(0) return buf # === App UI === st.title("🧬 DermBOT — Skin AI Assistant") st.caption(f"🧠 Using model: SkinGPT") uploaded_file = st.file_uploader("Upload a skin image", type=["jpg", "jpeg", "png"]) if "conversation" not in st.session_state: st.session_state.conversation = [] if uploaded_file: st.image(uploaded_file, caption="Uploaded image", use_column_width=True) image = Image.open(uploaded_file).convert("RGB") if not st.session_state.conversation: with st.spinner("Analyzing image..."): result = classifier.predict(image) if "error" in result: st.error(result["error"]) else: st.session_state.conversation.append(("assistant", result)) with st.chat_message("assistant"): st.markdown(result["diagnosis"]) else: # Follow-up questions if user_query := st.chat_input("Ask a follow-up question..."): st.session_state.conversation.append(("user", user_query)) with st.chat_message("user"): st.markdown(user_query) # Generate response with context context = "\n".join([f"{role}: {msg}" for role, msg in st.session_state.conversation]) response = classifier.generate(image, user_input=context) st.session_state.conversation.append(("assistant", response)) with st.chat_message("assistant"): st.markdown(response) # === PDF Button === if st.button("📄 Download Chat as PDF"): pdf_file = export_chat_to_pdf(st.session_state.messages) st.download_button("Download PDF", data=pdf_file, file_name="chat_history.pdf", mime="application/pdf")