Issue fix
Browse files
app.py
CHANGED
@@ -142,6 +142,13 @@ class SkinGPT4(nn.Module):
|
|
142 |
self.P = 14 # Patch size
|
143 |
self.D = 1408 # ViT embedding dimension
|
144 |
self.num_query_tokens = 32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
# Initialize components
|
146 |
self.vit = self._init_vit(vit_checkpoint_path)
|
147 |
print("Loaded ViT")
|
@@ -157,6 +164,8 @@ class SkinGPT4(nn.Module):
|
|
157 |
self.q_former.eval()
|
158 |
print("Loaded QFormer")
|
159 |
self.llama = self._init_llama()
|
|
|
|
|
160 |
self.llama_proj = nn.Linear(
|
161 |
self.q_former.bert_config.hidden_size,
|
162 |
self.llama.config.hidden_size
|
@@ -169,10 +178,7 @@ class SkinGPT4(nn.Module):
|
|
169 |
torch.zeros(1, self.num_query_tokens, self.q_former.bert_config.hidden_size)
|
170 |
)
|
171 |
nn.init.normal_(self.query_tokens, std=0.02)
|
172 |
-
self.tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf",
|
173 |
-
token=token, padding_side="right")
|
174 |
|
175 |
-
print("Loaded tokenizer")
|
176 |
def _init_vit(self, vit_checkpoint_path):
|
177 |
"""Initialize EVA-ViT-G with paper specifications"""
|
178 |
vit = create_eva_vit_g(
|
@@ -358,8 +364,8 @@ class SkinGPT4(nn.Module):
|
|
358 |
|
359 |
# Tokenize prompt
|
360 |
|
361 |
-
self.tokenizer.add_special_tokens({'additional_special_tokens': ['<ImageHere>']})
|
362 |
-
self.llama.resize_token_embeddings(len(self.tokenizer))
|
363 |
|
364 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(images.device)
|
365 |
|
@@ -380,16 +386,16 @@ class SkinGPT4(nn.Module):
|
|
380 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
381 |
|
382 |
|
383 |
-
def load_model(model_path):
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
|
394 |
|
395 |
|
|
|
142 |
self.P = 14 # Patch size
|
143 |
self.D = 1408 # ViT embedding dimension
|
144 |
self.num_query_tokens = 32
|
145 |
+
|
146 |
+
self.tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf",
|
147 |
+
token=token, padding_side="right")
|
148 |
+
|
149 |
+
print("Loaded tokenizer")
|
150 |
+
self.tokenizer.add_special_tokens({'additional_special_tokens': ['<ImageHere>']})
|
151 |
+
|
152 |
# Initialize components
|
153 |
self.vit = self._init_vit(vit_checkpoint_path)
|
154 |
print("Loaded ViT")
|
|
|
164 |
self.q_former.eval()
|
165 |
print("Loaded QFormer")
|
166 |
self.llama = self._init_llama()
|
167 |
+
self.llama.resize_token_embeddings(len(self.tokenizer))
|
168 |
+
|
169 |
self.llama_proj = nn.Linear(
|
170 |
self.q_former.bert_config.hidden_size,
|
171 |
self.llama.config.hidden_size
|
|
|
178 |
torch.zeros(1, self.num_query_tokens, self.q_former.bert_config.hidden_size)
|
179 |
)
|
180 |
nn.init.normal_(self.query_tokens, std=0.02)
|
|
|
|
|
181 |
|
|
|
182 |
def _init_vit(self, vit_checkpoint_path):
|
183 |
"""Initialize EVA-ViT-G with paper specifications"""
|
184 |
vit = create_eva_vit_g(
|
|
|
364 |
|
365 |
# Tokenize prompt
|
366 |
|
367 |
+
# self.tokenizer.add_special_tokens({'additional_special_tokens': ['<ImageHere>']})
|
368 |
+
# self.llama.resize_token_embeddings(len(self.tokenizer))
|
369 |
|
370 |
inputs = self.tokenizer(prompt, return_tensors="pt").to(images.device)
|
371 |
|
|
|
386 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
387 |
|
388 |
|
389 |
+
# def load_model(model_path):
|
390 |
+
# model_path = hf_hub_download(
|
391 |
+
# repo_id="KeerthiVM/SkinCancerDiagnosis",
|
392 |
+
# filename="dermnet_finetuned_version1.pth",
|
393 |
+
# )
|
394 |
+
# # model = SkinGPT4(vit_checkpoint_path="dermnet_finetuned_version1.pth")
|
395 |
+
# model = SkinGPT4(vit_checkpoint_path=model_path)
|
396 |
+
# model.to(device)
|
397 |
+
# model.eval()
|
398 |
+
# return model
|
399 |
|
400 |
|
401 |
|